Détail de l'auteur
Auteur Marian-Daniel Iordache |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Collaborative sparse regression for hyperspectral unmixing / Marian-Daniel Iordache in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
[article]
Titre : Collaborative sparse regression for hyperspectral unmixing Type de document : Article/Communication Auteurs : Marian-Daniel Iordache, Auteur ; José Bioucas-Dias, Auteur ; Antonio J. Plaza, Auteur Année de publication : 2014 Article en page(s) : pp 341 - 354 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] régressionRésumé : (Auteur) Sparse unmixing has been recently introduced in hyperspectral imaging as a framework to characterize mixed pixels. It assumes that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance (e.g., spectra collected on the ground by a field spectroradiometer). Unmixing then amounts to finding the optimal subset of signatures in a (potentially very large) spectral library that can best model each mixed pixel in the scene. In this paper, we present a refinement of the sparse unmixing methodology recently introduced which exploits the usual very low number of endmembers present in real images, out of a very large library. Specifically, we adopt the collaborative (also called “multitask” or “simultaneous”) sparse regression framework that improves the unmixing results by solving a joint sparse regression problem, where the sparsity is simultaneously imposed to all pixels in the data set. Our experimental results with both synthetic and real hyperspectral data sets show clearly the advantages obtained using the new joint sparse regression strategy, compared with the pixelwise independent approach. Numéro de notice : A2014-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2240001 En ligne : https://doi.org/10.1109/TGRS.2013.2240001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32943
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 1 tome 1 (January 2014) . - pp 341 - 354[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014011A RAB Revue Centre de documentation En réserve L003 Disponible