Détail de l'auteur
Auteur José Bioucas-Dias |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel sharpening approach for superresolving multiresolution optical images / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
[article]
Titre : A novel sharpening approach for superresolving multiresolution optical images Type de document : Article/Communication Auteurs : Claudia Paris, Auteur ; José Bioucas-Dias, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2019 Article en page(s) : pp 1545 - 1560 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] filtrage du bruit
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] problème inverseRésumé : (Auteur) This paper aims to provide a compact superresolution formulation specific for multispectral (MS) multiresolution optical data, i.e., images characterized by different scales across different spectral bands. The proposed method, named multiresolution sharpening approach (MuSA), relies on the solution of an optimization problem tailored to the properties of those images. The superresolution problem is formulated as the minimization of an objective function containing a data-fitting term that models the blurs and downsamplings of the different bands and a patch-based regularizer that promotes image self-similarity guided by the geometric details provided by the high-resolution bands. By exploiting the approximately low-rank property of the MS data, the ill-posedness of the inverse problem in hand is strongly reduced, thus sharply improving its conditioning. The state-of-the-art color block-matching and 3D filtering (C-BM3D) image denoiser is used as a patch-based regularizer by leveraging the “plug-and-play” framework: the denoiser is plugged into the iterations of the alternating direction method of multipliers. The main novelties of the proposed method are: 1) the introduction of an observation model tailored to the specific properties of (MS) multiresolution images and 2) the exploitation of the high-spatial-resolution bands to guide the grouping step in the color block-matching and 3D filtering (C-BM3D) denoiser, which constitutes a form of regularization learned from the high-resolution channels. The results obtained on the real and synthetic Sentinel 2 data sets give an evidence of the effectiveness of the proposed approach. Numéro de notice : A2019-129 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2867284 Date de publication en ligne : 26/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2867284 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92458
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1545 - 1560[article]Super-resolution of Sentinel-2 images : Learning a globally applicable deep neural network / Charis Lanaras in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
[article]
Titre : Super-resolution of Sentinel-2 images : Learning a globally applicable deep neural network Type de document : Article/Communication Auteurs : Charis Lanaras, Auteur ; José Bioucas-Dias, Auteur ; Silvano Galliani, Auteur ; Emmanuel P. Baltsavias, Auteur ; Konrad Schindler, Auteur Année de publication : 2018 Article en page(s) : pp 305 - 319 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] échantillonnage de données
[Termes IGN] erreur moyenne quadratique
[Termes IGN] image à basse résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pas d'échantillonnage au sol
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) The Sentinel-2 satellite mission delivers multi-spectral imagery with 13 spectral bands, acquired at three different spatial resolutions. The aim of this research is to super-resolve the lower-resolution (20 m and 60 m Ground Sampling Distance – GSD) bands to 10 m GSD, so as to obtain a complete data cube at the maximal sensor resolution. We employ a state-of-the-art convolutional neural network (CNN) to perform end-to-end upsampling, which is trained with data at lower resolution, i.e., from 40 20 m, respectively 360 60 m GSD. In this way, one has access to a virtually infinite amount of training data, by downsampling real Sentinel-2 images. We use data sampled globally over a wide range of geographical locations, to obtain a network that generalises across different climate zones and land-cover types, and can super-resolve arbitrary Sentinel-2 images without the need of retraining. In quantitative evaluations (at lower scale, where ground truth is available), our network, which we call DSen2, outperforms the best competing approach by almost 50% in RMSE, while better preserving the spectral characteristics. It also delivers visually convincing results at the full 10 m GSD. Numéro de notice : A2018-540 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.09.018 Date de publication en ligne : 21/10/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.09.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91554
in ISPRS Journal of photogrammetry and remote sensing > vol 146 (December 2018) . - pp 305 - 319[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018131 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018133 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018132 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Multiband image fusion based on spectral unmixing / Qi Wei in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
[article]
Titre : Multiband image fusion based on spectral unmixing Type de document : Article/Communication Auteurs : Qi Wei, Auteur ; José Bioucas-Dias, Auteur ; Nicolas Dobigeon, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 7236 - 7249 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] fusion d'images
[Termes IGN] image à basse résolution
[Termes IGN] image à haute résolution
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] matrice de covarianceRésumé : (Auteur) This paper presents a multiband image fusion algorithm based on unsupervised spectral unmixing for combining a high-spatial-low-spectral-resolution image and a low-spatial-high-spectral-resolution image. The widely used linear observation model (with additive Gaussian noise) is combined with the linear spectral mixture model to form the likelihoods of the observations. The nonnegativity and sum-to-one constraints resulting from the intrinsic physical properties of the abundances are introduced as prior information to regularize this ill-posed problem. The joint fusion and unmixing problem is then formulated as maximizing the joint posterior distribution with respect to the endmember signatures and abundance maps. This optimization problem is attacked with an alternating optimization strategy. The two resulting subproblems are convex and are solved efficiently using the alternating direction method of multipliers. Experiments are conducted for both synthetic and semi-real data. Simulation results show that the proposed unmixing-based fusion scheme improves both the abundance and endmember estimation compared with the state-of-the-art joint fusion and unmixing algorithms. Numéro de notice : A2016-930 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2598784 En ligne : https://doi.org/10.1109/TGRS.2016.2598784 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83344
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 12 (December 2016) . - pp 7236 - 7249[article]Hyperspectral and multispectral image fusion based on a sparse representation / Qi Wei in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Hyperspectral and multispectral image fusion based on a sparse representation Type de document : Article/Communication Auteurs : Qi Wei, Auteur ; José Bioucas-Dias, Auteur ; Nicolas Dobigeon, Auteur ; Jean-Yves Tourneret, Auteur Année de publication : 2015 Article en page(s) : pp 3658 - 3668 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] décomposition d'image
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] optimisation (mathématiques)
[Termes IGN] problème inverse
[Termes IGN] représentation parcimonieuseRésumé : (Résumé) This paper presents a variational-based approach for fusing hyperspectral and multispectral images. The fusion problem is formulated as an inverse problem whose solution is the target image assumed to live in a lower dimensional subspace. A sparse regularization term is carefully designed, relying on a decomposition of the scene on a set of dictionaries. The dictionary atoms and the supports of the corresponding active coding coefficients are learned from the observed images. Then, conditionally on these dictionaries and supports, the fusion problem is solved via alternating optimization with respect to the target image (using the alternating direction method of multipliers) and the coding coefficients. Simulation results demonstrate the efficiency of the proposed algorithm when compared with state-of-the-art fusion methods. Numéro de notice : A2015-315 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2381272 En ligne : https://doi.org/10.1109/TGRS.2014.2381272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76564
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3658 - 3668[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible Collaborative sparse regression for hyperspectral unmixing / Marian-Daniel Iordache in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)
[article]
Titre : Collaborative sparse regression for hyperspectral unmixing Type de document : Article/Communication Auteurs : Marian-Daniel Iordache, Auteur ; José Bioucas-Dias, Auteur ; Antonio J. Plaza, Auteur Année de publication : 2014 Article en page(s) : pp 341 - 354 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] régressionRésumé : (Auteur) Sparse unmixing has been recently introduced in hyperspectral imaging as a framework to characterize mixed pixels. It assumes that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance (e.g., spectra collected on the ground by a field spectroradiometer). Unmixing then amounts to finding the optimal subset of signatures in a (potentially very large) spectral library that can best model each mixed pixel in the scene. In this paper, we present a refinement of the sparse unmixing methodology recently introduced which exploits the usual very low number of endmembers present in real images, out of a very large library. Specifically, we adopt the collaborative (also called “multitask” or “simultaneous”) sparse regression framework that improves the unmixing results by solving a joint sparse regression problem, where the sparsity is simultaneously imposed to all pixels in the data set. Our experimental results with both synthetic and real hyperspectral data sets show clearly the advantages obtained using the new joint sparse regression strategy, compared with the pixelwise independent approach. Numéro de notice : A2014-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2240001 En ligne : https://doi.org/10.1109/TGRS.2013.2240001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32943
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 1 tome 1 (January 2014) . - pp 341 - 354[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014011A RAB Revue Centre de documentation En réserve L003 Disponible Hyperspectral unmixing based on mixtures of Dirichlet components / J. Nascimento in IEEE Transactions on geoscience and remote sensing, vol 50 n° 3 (March 2012)Permalink