Détail de l'autorité
ICIP 2019, 26th IEEE International Conference on Image Processing 22/09/2019 25/09/2019 Taipei Taiwan Proceedings IEEE
nom du congrès :
ICIP 2019, 26th IEEE International Conference on Image Processing
début du congrès :
22/09/2019
fin du congrès :
25/09/2019
ville du congrès :
Taipei
pays du congrès :
Taiwan
site des actes du congrès :
|
Documents disponibles (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Geometric camera pose refinement with learned depth maps Type de document : Article/Communication Auteurs : Nathan Piasco , Auteur ; Désiré Sidibé, Auteur ; Cédric Demonceaux, Auteur ; Valérie Gouet-Brunet , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2019 Projets : PLaTINUM / Gouet-Brunet, Valérie Conférence : ICIP 2019, 26th IEEE International Conference on Image Processing 22/09/2019 25/09/2019 Taipei Taiwan Proceedings IEEE Importance : 5 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme ICP
[Termes IGN] carte de profondeur
[Termes IGN] estimation de pose
[Termes IGN] réseau neuronal convolutif
[Termes IGN] scène intérieure
[Termes IGN] semis de pointsRésumé : (auteur) We present a new method for image-only camera relocalisation composed of a fast image indexing retrieval step followed by pose refinement based on ICP (Iterative Closest Point). The first step aims to find an initial pose for the query by evaluating images similarity with low dimensional global deep descriptors. Subsequently, we predict with a fully convolutional deep encoder-decoder neural network a dense depth map from the image query. We use this depth map to create a local point cloud and refine the initial query pose using an ICP algorithm.We demonstrate the effectiveness of our new approach on various indoor scenes. Compared to learned pose regression methods, our proposal can be used on multiple scenes without the need of a specific weights-setup for each scene, while showing equivalent results. Numéro de notice : C2019-015 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/ICIP.2019.8803014 Date de publication en ligne : 26/08/2019 En ligne : https://doi.org/10.1109/ICIP.2019.8803014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93279