Détail de l'auteur
Auteur Jayson Murgoitio |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models / Jayson Murgoitio in Transactions in GIS, vol 18 n° 1 (February 2014)
[article]
Titre : Airborne LiDAR and terrestrial laser scanning derived vegetation obstruction factors for visibility models Type de document : Article/Communication Auteurs : Jayson Murgoitio, Auteur ; Rupesh Shrestha, Auteur ; Nancy Glenn, Auteur ; Lucas Spaete, Auteur Année de publication : 2014 Article en page(s) : pp 125 - 146 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre (flore)
[Termes IGN] base de données dérivée
[Termes IGN] contour
[Termes IGN] corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] écosystème forestier
[Termes IGN] intégration de données
[Termes IGN] Pinus contorta
[Termes IGN] régression
[Termes IGN] télémétrie laser aéroporté
[Termes IGN] télémétrie laser terrestre
[Termes IGN] visibilitéRésumé : (Auteur) Research presented here explores the feasibility of leveraging vegetation data derived from airborne light detection and ranging (LiDAR) and terrestrial laser scanning (TLS) for visibility modeling. Using LiDAR and TLS datasets of a lodgepole pine (Pinus contorta) dominant ecosystem, tree canopy and trunk obstructions were isolated relevant to a discrete visibility beam in a short-range line-of-sight model. Cumulative obstruction factors from vegetation were compared with reference visibility values from digital photographs along sightline paths. LiDAR-derived tree factors were augmented with single-scan TLS data for obstruction prediction. Good correlation between datasets was found up to 10 m from the terrestrial scanner, but fine scale visibility modeling was problematic at longer distances. Analysis of correlation and regression results reveal the influence of obstruction shadowing inherent to discrete LiDAR and TLS, potentially limiting the feasibility of modeling visibility over large areas with similar technology. However, the results support the potential for TLS-derived subcanopy metrics for augmenting large amounts of aerial LiDAR data to significantly improve models of forest structure. Subtle LiDAR processing improvements, including more accurate tree delineation through higher point density aerial data, combined with better vegetation quantification processes for TLS data, will advance the feasibility and accuracy of data integration. Numéro de notice : A2014-069 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12022 Date de publication en ligne : 17/05/2013 En ligne : https://doi.org/10.1111/tgis.12022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32974
in Transactions in GIS > vol 18 n° 1 (February 2014) . - pp 125 - 146[article]