Détail de l'auteur
Auteur Yanfei Zhong |
Documents disponibles écrits par cet auteur (12)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Edge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery / Xiaoyan Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
[article]
Titre : Edge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Xiaoyan Lu, Auteur ; Yanfei Zhong, Auteur ; Zhuo Zheng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 153 - 160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] accentuation de contours
[Termes IGN] analyse multiéchelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] filtrage du bruit
[Termes IGN] image à très haute résolution
[Termes IGN] ombre
[Termes IGN] segmentation d'imageRésumé : (auteur) Road detection in very-high-resolution remote sensing imagery is a hot research topic. However, the high resolution results in highly complex data distributions, which lead to much noise for road detection—for example, shadows and occlusions caused by disturbance on the roadside make it difficult to accurately recognize road. In this article, a novel edge-reinforced convolutional neural network, combined with multiscale feature extraction and edge reinforcement, is proposed to alleviate this problem. First, multiscale feature extraction is used in the center part of the proposed network to extract multiscale context information. Then edge reinforcement, applying a simplified U-Net to learn additional edge information, is used to restore the road information. The two operations can be used with different convolutional neural networks. Finally, two public road data sets are adopted to verify the effectiveness of the proposed approach, with experimental results demonstrating its superiority. Numéro de notice : A2020-145 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.3.153 Date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.14358/PERS.86.3.153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94774
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 3 (March 2020) . - pp 153 - 160[article]Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection Type de document : Article/Communication Auteurs : Da He, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 1696 - 1717 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification du maximum a posteriori
[Termes IGN] détection de changement
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Quickbird
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle dynamique
[Termes IGN] optimisation spatiale
[Termes IGN] précision infrapixellaire
[Termes IGN] série temporelle
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (Auteur) The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral–spatial–temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China. Numéro de notice : A2020-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947708 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947708 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94662
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1696 - 1717[article]Scene classification based on multiscale convolutional neural network / Yanfei Liu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Scene classification based on multiscale convolutional neural network Type de document : Article/Communication Auteurs : Yanfei Liu, Auteur ; Yanfei Zhong, Auteur ; Qianqing Qin, Auteur Année de publication : 2018 Article en page(s) : pp 7109 - 7121 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] image multidimensionnelle
[Termes IGN] image satellite
[Termes IGN] mesure de similitude
[Termes IGN] modèle orienté objetRésumé : (auteur) With the large amount of high-spatial resolution images now available, scene classification aimed at obtaining high-level semantic concepts has drawn great attention. The convolutional neural networks (CNNs), which are typical deep learning methods, have widely been studied to automatically learn features for the images for scene classification. However, scene classification based on CNNs is still difficult due to the scale variation of the objects in remote sensing imagery. In this paper, a multiscale CNN (MCNN) framework is proposed to solve the problem. In MCNN, a network structure containing dual branches of a fixed-scale net (F-net) and a varied-scale net (V-net) is constructed and the parameters are shared by the F-net and V-net. The images and their rescaled images are fed into the F-net and V-net, respectively, allowing us to simultaneously train the shared network weights on multiscale images. Furthermore, to ensure that the features extracted from MCNN are scale invariant, a similarity measure layer is added to MCNN, which forces the two feature vectors extracted from the image and its corresponding rescaled image to be as close as possible in the training phase. To demonstrate the effectiveness of the proposed method, we compared the results obtained using three widely used remote sensing data sets: the UC Merced data set, the aerial image data set, and the google data set of SIRI-WHU. The results confirm that the proposed method performs significantly better than the other state-of-the-art scene classification methods. Numéro de notice : A2018-556 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2848473 Date de publication en ligne : 26/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2848473 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91660
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 7109 - 7121[article]Multiobjective subpixel land-cover mapping / Ailong Ma in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)
[article]
Titre : Multiobjective subpixel land-cover mapping Type de document : Article/Communication Auteurs : Ailong Ma, Auteur ; Yanfei Zhong, Auteur ; Da He, Auteur ; Liangpei Zhang, Auteur Année de publication : 2018 Article en page(s) : pp 422 - 435 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] problème inverseRésumé : (Auteur) The hyperspectral subpixel mapping (SPM) technique can generate a land-cover map at the subpixel scale by modeling the relationship between the abundance map and the spatial distribution image of the subpixels. However, this is an inverse ill-posed problem. The most widely used way to resolve the problem is to introduce additional information as a regularization term and acquire the unique optimal solution. However, the regularization parameter either needs to be determined manually or it cannot be determined in a fully adaptive manner. Thus, in this paper, the multiobjective subpixel land-cover mapping (MOSM) framework for hyperspectral remote sensing imagery is proposed, in which the two function terms [the fidelity term and the prior term (i.e., the regularization term)] can be optimized simultaneously, and there is no need to determine the regularization parameter explicitly. In order to achieve this goal, two strategies are designed in MOSM: 1) a high-resolution distribution image-based individual encoding strategy is designed in order to calculate the prior term accurately and 2) a subfitness-based individual comparison strategy is designed in order to generate subpixel land-cover mapping solutions with a high quality to update the population. Four data sets (one simulated, two synthetic, and one real hyperspectral image) were used to test the proposed method. The experimental results show that MOSM can perform better than the other subpixel land-cover mapping methods, demonstrating the effectiveness of MOSM in balancing the fidelity term and prior term in the SPM model. Numéro de notice : A2018-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2748701 Date de publication en ligne : 10/11/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2748701 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89845
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 1 (January 2018) . - pp 422 - 435[article]Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing / Xinyu Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
[article]
Titre : Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing Type de document : Article/Communication Auteurs : Xinyu Wang, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur ; Yanyan Xu, Auteur Année de publication : 2017 Article en page(s) : pp 6287 - 6304 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] segmentation d'imageRésumé : (Auteur) In recent years, blind source separation (BSS) has received much attention in the hyperspectral unmixing field due to the fact that it allows the simultaneous estimation of both endmembers and fractional abundances. Although great performances can be obtained by the BSS-based unmixing methods, the decomposition results are still unstable and sensitive to noise. Motivated by the first law of geography, some recent studies have revealed that spatial information can lead to an improvement in the decomposition stability. In this paper, the group-structured prior information of hyperspectral images is incorporated into the nonnegative matrix factorization optimization, where the data are organized into spatial groups. Pixels within a local spatial group are expected to share the same sparse structure in the low-rank matrix (abundance). To fully exploit the group structure, image segmentation is introduced to generate the spatial groups. Instead of a predefined group with a regular shape (e.g., a cross or a square window), the spatial groups are adaptively represented by superpixels. Moreover, the spatial group structure and sparsity of the abundance are integrated as a modified mixed-norm regularization to exploit the shared sparse pattern, and to avoid the loss of spatial details within a spatial group. The experimental results obtained with both simulated and real hyperspectral data confirm the high efficiency and precision of the proposed algorithm. Numéro de notice : A2017-747 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2724944 En ligne : https://doi.org/10.1109/TGRS.2017.2724944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88782
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6287 - 6304[article]Spatial-spectral unsupervised convolutional sparse auto-encoder classifier for hyperspectral imagery / Xiaobing Han in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 3 (March 2017)PermalinkA spectral–structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery / Bei Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 116 (June 2016)PermalinkAn adaptive subpixel mapping method based on MAP model and class determination strategy for hyperspectral remote sensing imagery / Yanfei Zhong in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)PermalinkAdaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery / Ruyi Feng in ISPRS Journal of photogrammetry and remote sensing, vol 97 (November 2014)PermalinkAdaptive MAP sub-pixel mapping model based on regularization curve for multiple shifted hyperspectral imagery / Yanfei Zhong in ISPRS Journal of photogrammetry and remote sensing, vol 96 (October 2014)PermalinkAdaptive subpixel mapping based on a multiagent system for remote-sensing imagery / Xiong Xu in IEEE Transactions on geoscience and remote sensing, vol 52 n° 2 (February 2014)PermalinkMultiagent object-based classifier for high spatial resolution imagery / Yanfei Zhong in IEEE Transactions on geoscience and remote sensing, vol 52 n° 2 (February 2014)Permalink