Détail de l'auteur
Auteur Liangpei Zhang |
Documents disponibles écrits par cet auteur (27)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection Type de document : Article/Communication Auteurs : Da He, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 1696 - 1717 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification du maximum a posteriori
[Termes IGN] détection de changement
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Quickbird
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle dynamique
[Termes IGN] optimisation spatiale
[Termes IGN] précision infrapixellaire
[Termes IGN] série temporelle
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (Auteur) The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral–spatial–temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China. Numéro de notice : A2020-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947708 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947708 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94662
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1696 - 1717[article]Multiobjective subpixel land-cover mapping / Ailong Ma in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)
[article]
Titre : Multiobjective subpixel land-cover mapping Type de document : Article/Communication Auteurs : Ailong Ma, Auteur ; Yanfei Zhong, Auteur ; Da He, Auteur ; Liangpei Zhang, Auteur Année de publication : 2018 Article en page(s) : pp 422 - 435 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] problème inverseRésumé : (Auteur) The hyperspectral subpixel mapping (SPM) technique can generate a land-cover map at the subpixel scale by modeling the relationship between the abundance map and the spatial distribution image of the subpixels. However, this is an inverse ill-posed problem. The most widely used way to resolve the problem is to introduce additional information as a regularization term and acquire the unique optimal solution. However, the regularization parameter either needs to be determined manually or it cannot be determined in a fully adaptive manner. Thus, in this paper, the multiobjective subpixel land-cover mapping (MOSM) framework for hyperspectral remote sensing imagery is proposed, in which the two function terms [the fidelity term and the prior term (i.e., the regularization term)] can be optimized simultaneously, and there is no need to determine the regularization parameter explicitly. In order to achieve this goal, two strategies are designed in MOSM: 1) a high-resolution distribution image-based individual encoding strategy is designed in order to calculate the prior term accurately and 2) a subfitness-based individual comparison strategy is designed in order to generate subpixel land-cover mapping solutions with a high quality to update the population. Four data sets (one simulated, two synthetic, and one real hyperspectral image) were used to test the proposed method. The experimental results show that MOSM can perform better than the other subpixel land-cover mapping methods, demonstrating the effectiveness of MOSM in balancing the fidelity term and prior term in the SPM model. Numéro de notice : A2018-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2748701 Date de publication en ligne : 10/11/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2748701 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89845
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 1 (January 2018) . - pp 422 - 435[article]Unsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification / Yiting Tao in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
[article]
Titre : Unsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification Type de document : Article/Communication Auteurs : Yiting Tao, Auteur ; Miaozhong Xu, Auteur ; Fan Zhang, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 6805 - 6823 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] classification pixellaire
[Termes IGN] déconvolution
[Termes IGN] image Geoeye
[Termes IGN] image Quickbird
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) As the acquisition of very high resolution (VHR) satellite images becomes easier owing to technological advancements, ever more stringent requirements are being imposed on automatic image interpretation. Moreover, per-pixel classification has become the focus of research interests in this regard. However, the efficient and effective processing and the interpretation of VHR satellite images remain a critical task. Convolutional neural networks (CNNs) have recently been applied to VHR satellite images with considerable success. However, the prevalent CNN models accept input data of fixed sizes and train the classifier using features extracted directly from the convolutional stages or the fully connected layers, which cannot yield pixel-to-pixel classifications. Moreover, training a CNN model requires large amounts of labeled reference data. These are challenging to obtain because per-pixel labeled VHR satellite images are not open access. In this paper, we propose a framework called the unsupervised-restricted deconvolutional neural network (URDNN). It can solve these problems by learning an end-to-end and pixel-to-pixel classification and handling a VHR classification using a fully convolutional network and a small number of labeled pixels. In URDNN, supervised learning is always under the restriction of unsupervised learning, which serves to constrain and aid supervised training in learning more generalized and abstract feature. To some degree, it will try to reduce the problems of overfitting and undertraining, which arise from the scarcity of labeled training data, and to gain better classification results using fewer training samples. It improves the generality of the classification model. We tested the proposed URDNN on images from the Geoeye and Quickbird sensors and obtained satisfactory results with the highest overall accuracy (OA) achieved as 0.977 and 0.989, respectively. Experiments showed that the combined effects of additional kernels and stages may have produced better results, and two-stage URDNN consistently produced a more stable result. We compared URDNN with four methods and found that with a small ratio of selected labeled data items, it yielded the highest and most stable results, whereas the accuracy values of the other methods quickly decreased. For some categories with fewer training pixels, accuracy for categories from other methods was considerably worse than that in URDNN, with the largest difference reaching almost 10%. Hence, the proposed URDNN can successfully handle the VHR image classification using a small number of labeled pixels. Furthermore, it is more effective than state-of-the-art methods. Numéro de notice : A2017-766 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2734697 En ligne : https://doi.org/10.1109/TGRS.2017.2734697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88803
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 6805 - 6823[article]Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing / Xinyu Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
[article]
Titre : Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing Type de document : Article/Communication Auteurs : Xinyu Wang, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur ; Yanyan Xu, Auteur Année de publication : 2017 Article en page(s) : pp 6287 - 6304 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] segmentation d'imageRésumé : (Auteur) In recent years, blind source separation (BSS) has received much attention in the hyperspectral unmixing field due to the fact that it allows the simultaneous estimation of both endmembers and fractional abundances. Although great performances can be obtained by the BSS-based unmixing methods, the decomposition results are still unstable and sensitive to noise. Motivated by the first law of geography, some recent studies have revealed that spatial information can lead to an improvement in the decomposition stability. In this paper, the group-structured prior information of hyperspectral images is incorporated into the nonnegative matrix factorization optimization, where the data are organized into spatial groups. Pixels within a local spatial group are expected to share the same sparse structure in the low-rank matrix (abundance). To fully exploit the group structure, image segmentation is introduced to generate the spatial groups. Instead of a predefined group with a regular shape (e.g., a cross or a square window), the spatial groups are adaptively represented by superpixels. Moreover, the spatial group structure and sparsity of the abundance are integrated as a modified mixed-norm regularization to exploit the shared sparse pattern, and to avoid the loss of spatial details within a spatial group. The experimental results obtained with both simulated and real hyperspectral data confirm the high efficiency and precision of the proposed algorithm. Numéro de notice : A2017-747 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2724944 En ligne : https://doi.org/10.1109/TGRS.2017.2724944 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88782
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6287 - 6304[article]Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing / Wei He in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)
[article]
Titre : Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing Type de document : Article/Communication Auteurs : Wei He, Auteur ; Hongyan Zhang, Auteur ; Liangpei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 3909 - 3921 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectrale
[Termes IGN] pondérationRésumé : (Auteur) Blind hyperspectral unmixing (HU), which includes the estimation of endmembers and their corresponding fractional abundances, is an important task for hyperspectral analysis. Recently, nonnegative matrix factorization (NMF) and its extensions have been widely used in HU. Unfortunately, most of the NMF-based methods can easily lead to an unsuitable solution, due to the nonconvexity of the NMF model and the influence of noise. To overcome this limitation, we make the best use of the structure of the abundance maps, and propose a new blind HU method named total variation regularized reweighted sparse NMF (TV-RSNMF). First, the abundance matrix is assumed to be sparse, and a weighted sparse regularizer is incorporated into the NMF model. The weights of the weighted sparse regularizer are adaptively updated related to the abundance matrix. Second, the abundance map corresponding to a single fixed endmember should be piecewise smooth. Therefore, the TV regularizer is adopted to capture the piecewise smooth structure of each abundance map. In our multiplicative iterative solution to the proposed TV-RSNMF model, the TV regularizer can be regarded as an abundance map denoising procedure, which improves the robustness of TV-RSNMF to noise. A number of experiments were conducted in both simulated and real-data conditions to illustrate the advantage of the proposed TV-RSNMF method for blind HU. Numéro de notice : A2017-490 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2683719 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2683719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86417
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 7 (July 2017) . - pp 3909 - 3921[article]Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning / Yanni Dong in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)PermalinkSpatial-spectral unsupervised convolutional sparse auto-encoder classifier for hyperspectral imagery / Xiaobing Han in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 3 (March 2017)PermalinkJoint sparse representation and multitask learning for hyperspectral target detection / Yuxiang Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)PermalinkHigh-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations / Linwei Yue in ISPRS Journal of photogrammetry and remote sensing, vol 123 (January 2017)PermalinkAn integrated framework for the spatio–temporal–spectral fusion of remote sensing images / Huanfeng Shen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)PermalinkA robust background regression based score estimation algorithm for hyperspectral anomaly detection / Zhao Rui in ISPRS Journal of photogrammetry and remote sensing, vol 122 (December 2016)PermalinkNoise removal from hyperspectral image with joint spectral–spatial distributed sparse representation / Jie Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)PermalinkA general variational framework considering cast shadows for the topographic correction of remote sensing imagery / Huifang Li in ISPRS Journal of photogrammetry and remote sensing, vol 117 (July 2016)PermalinkA spectral–structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery / Bei Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 116 (June 2016)PermalinkTotal-variation-regularized low-rank matrix factorization for hyperspectral image restoration / Wei He in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)Permalink