Détail de l'auteur
Auteur Akira Iwasaki |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral image classification with canonical correlation forests / Junshi Xia in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
[article]
Titre : Hyperspectral image classification with canonical correlation forests Type de document : Article/Communication Auteurs : Junshi Xia, Auteur ; Naoto Yokoya, Auteur ; Akira Iwasaki, Auteur Année de publication : 2017 Article en page(s) : pp 421 - 431 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse canonique
[Termes IGN] analyse en composantes indépendantes
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classificateur
[Termes IGN] classification
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image hyperspectrale
[Termes IGN] Rotation Forest classificationRésumé : (Auteur) Multiple classifier systems or ensemble learning is an effective tool for providing accurate classification results of hyperspectral remote sensing images. Two well-known ensemble learning classifiers for hyperspectral data are random forest (RF) and rotation forest (RoF). In this paper, we proposed to use a novel decision tree (DT) ensemble method, namely, canonical correlation forest (CCF). More specifically, several individual canonical correlation trees (CCTs) that are binary DTs, which use canonical correlation components for the hyperplane splitting, are used to construct the CCF. Additionally, we adopt the projection bootstrap technique in CCF, in which the full spectral bands are retained for split selection in the projected space. The techniques aforementioned allow the CCF to improve the accuracy of member classifiers and diversity within the ensemble. Furthermore, the CCF is extended to the spectral-spatial frameworks that incorporate Markov random fields, extended multiattribute profiles (EMAPs), and the ensemble of independent component analysis and rolling guidance filter (E-ICA-RGF). Experimental results on six hyperspectral data sets are used to indicate the comparative effectiveness of the proposed method, in terms of accuracy and computational complexity, compared with RF and RoF, and it turns out that CCF is a promising approach for hyperspectral image classification not only with spectral information but also in the spectral-spatial frameworks. Numéro de notice : A2017-021 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2607755 En ligne : https://doi.org/10.1109/TGRS.2016.2607755 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83953
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 1 (January 2017) . - pp 421 - 431[article]Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization / Naoto Yokoya in IEEE Transactions on geoscience and remote sensing, vol 52 n° 2 (February 2014)
[article]
Titre : Nonlinear unmixing of hyperspectral data using semi-nonnegative matrix factorization Type de document : Article/Communication Auteurs : Naoto Yokoya, Auteur ; Jocelyn Chanussot, Auteur ; Akira Iwasaki, Auteur Année de publication : 2014 Article en page(s) : pp 1430 - 1437 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation
[Termes IGN] image hyperspectrale
[Termes IGN] matrice
[Termes IGN] modèle non linéaireRésumé : (Auteur) Nonlinear spectral mixture models have recently received particular attention in hyperspectral image processing. In this paper, we present a novel optimization method of nonlinear unmixing based on a generalized bilinear model (GBM), which considers the second-order scattering of photons in a spectral mixture model. Semi-nonnegative matrix factorization (semi-NMF) is used for the optimization to process a whole image in matrix form. When endmember spectra are given, the optimization of abundance and interaction abundance fractions converge to a local optimum by alternating update rules with simple implementation. The proposed method is evaluated using synthetic datasets considering its robustness for the accuracy of endmember extraction and spectral complexity, and shows smaller errors in abundance fractions rather than conventional methods. GBM-based unmixing using semi-NMF is applied to the analysis of an airborne hyperspectral image taken over an agricultural field with many endmembers, and it visualizes the impact of a nonlinear interaction on abundance maps at reasonable computational cost. Numéro de notice : A2014-076 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2245671 En ligne : https://doi.org/10.1109/TGRS.2013.2245671 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32981
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 2 (February 2014) . - pp 1430 - 1437[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014021 RAB Revue Centre de documentation En réserve L003 Disponible