Détail de l'auteur
Auteur Jun Liu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hybrid image noise reduction algorithm based on genetic ant colony and PCNN / Chong Shen in The Visual Computer, vol 33 n° 11 (November 2017)
[article]
Titre : Hybrid image noise reduction algorithm based on genetic ant colony and PCNN Type de document : Article/Communication Auteurs : Chong Shen, Auteur ; Ding Wang, Auteur ; Shuming Tang, Auteur ; Huiliang Cao, Auteur ; Jun Liu, Auteur Année de publication : 2017 Article en page(s) : pp 1373 - 1384 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme génétique
[Termes IGN] filtrage du bruit
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] réseau neuronal artificielRésumé : (Auteur) Pulse Coupled Neural Network (PCNN) has gained widespread attention as a nonlinear filtering technology in reducing the noise while keeping the details of images well, but how to determine the proper parameters for PCNN is a big challenge. In this paper, a method that can optimize the parameters of PCNN by combining the genetic algorithm (GA) and ant colony algorithm is proposed, which named as GACA, and the optimized procedure is named as GACA-PCNN. Firstly, the noisy image is filtered by median filter in the proposed GACA-PCNN method; then, the noisy image is filtered by GACA-PCNN constantly and the median filtering image is used as a reference image; finally, a set of parameters of PCNN can be automatically estimated by GACA, and the pretty effective denoising image will be obtained. Experimental results indicate that GACA-PCNN has a better performance on PSNR (peak signal noise rate) and a stronger capacity of preserving the details than previous denoising techniques. Numéro de notice : A2017-712 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-016-1325-x En ligne : https://doi.org/10.1007/s00371-016-1325-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88093
in The Visual Computer > vol 33 n° 11 (November 2017) . - pp 1373 - 1384[article]A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation / Xiran Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation Type de document : Article/Communication Auteurs : Xiran Zhou, Auteur ; Jun Liu, Auteur ; Lei Cao, Auteur ; Qiming Zhou, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 16 - 27 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] appariement d'histogramme
[Termes IGN] filtrage numérique d'image
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] modulation de fréquence
[Termes IGN] qualité d'image
[Termes IGN] transformation intensité-teinte-saturationRésumé : (Auteur) High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity–hue–saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods. Numéro de notice : A2014-081 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32986
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 16 - 27[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible