Détail de l'auteur
Auteur Shiming Xiang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semantic labeling in very high resolution images via a self-cascaded convolutional neural network / Yoncheng Liu in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : Semantic labeling in very high resolution images via a self-cascaded convolutional neural network Type de document : Article/Communication Auteurs : Yoncheng Liu, Auteur ; Bin Fan, Auteur ; Lingfeng Wang, Auteur ; Jun Bai, Auteur ; Shiming Xiang, Auteur ; Chunhong Pan, Auteur Année de publication : 2018 Article en page(s) : pp 78 - 95 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] image à très haute résolution
[Termes IGN] réseau neuronal convolutif
[Termes IGN] zone urbaineRésumé : (Auteur) Semantic labeling for very high resolution (VHR) images in urban areas, is of significant importance in a wide range of remote sensing applications. However, many confusing manmade objects and intricate fine-structured objects make it very difficult to obtain both coherent and accurate labeling results. For this challenging task, we propose a novel deep model with convolutional neural networks (CNNs), i.e., an end-to-end self-cascaded network (ScasNet). Specifically, for confusing manmade objects, ScasNet improves the labeling coherence with sequential global-to-local contexts aggregation. Technically, multi-scale contexts are captured on the output of a CNN encoder, and then they are successively aggregated in a self-cascaded manner. Meanwhile, for fine-structured objects, ScasNet boosts the labeling accuracy with a coarse-to-fine refinement strategy. It progressively refines the target objects using the low-level features learned by CNN’s shallow layers. In addition, to correct the latent fitting residual caused by multi-feature fusion inside ScasNet, a dedicated residual correction scheme is proposed. It greatly improves the effectiveness of ScasNet. Extensive experimental results on three public datasets, including two challenging benchmarks, show that ScasNet achieves the state-of-the-art performance. Numéro de notice : A2018-490 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.12.007 Date de publication en ligne : 21/12/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.12.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91226
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 78 - 95[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Structured sparse method for hyperspectral unmixing / Feiyun Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
[article]
Titre : Structured sparse method for hyperspectral unmixing Type de document : Article/Communication Auteurs : Feiyun Zhu, Auteur ; Yin Wang, Auteur ; Shiming Xiang, Auteur ; Bin Fan, Auteur ; Chunhong Pan, Auteur Année de publication : 2014 Article en page(s) : pp 101 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation
[Termes IGN] image hyperspectrale
[Termes IGN] matrice creuse
[Termes IGN] programmation par contraintesRésumé : (Auteur) Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method based on the following two aspects. First, we incorporate a graph Laplacian to encode the manifold structures embedded in the hyperspectral data space. In this way, the highly similar neighboring pixels can be grouped together. Second, the lasso penalty is employed in SS-NMF for the fact that pixels in the same manifold structure are sparsely mixed by a common set of relevant bases. These two factors act as a new structured sparse constraint. With this constraint, our method can learn a compact space, where highly similar pixels are grouped to share correlated sparse representations. Experiments on real hyperspectral data sets with different noise levels demonstrate that our method outperforms the state-of-the-art methods significantly. Numéro de notice : A2014-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.11.014 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.11.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32992
in ISPRS Journal of photogrammetry and remote sensing > vol 88 (February 2014) . - pp 101 - 118[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014021 RAB Revue Centre de documentation En réserve L003 Disponible