Détail de l'auteur
Auteur Aaron E. Maxwell |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Predicting palustrine wetland probability using random forest machine learning and digital elevation data-derived terrain variables / Aaron E. Maxwell in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 6 (June 2016)
[article]
Titre : Predicting palustrine wetland probability using random forest machine learning and digital elevation data-derived terrain variables Type de document : Article/Communication Auteurs : Aaron E. Maxwell, Auteur ; Thimoty A. Warner, Auteur ; Michael P. Strager, Auteur Année de publication : 2016 Article en page(s) : pp 437 - 447 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données topographiques
[Termes IGN] Etats-Unis
[Termes IGN] inventaire
[Termes IGN] marais salant
[Termes IGN] modèle numérique de terrain
[Termes IGN] prédiction
[Termes IGN] surveillance écologique
[Termes IGN] Virgine OccidentaleRésumé : (Auteur) The probability of palustrine wetland occurrence in the state of West Virginia, USA, was mapped based on topographic variables and using random forests (RF) machine learning. Models were developed for both selected ecological subregions and the entire state. The models were first trained using pixels randomly selected from the United States National Wetland Inventory (NWI) dataset and were tested using a separate random subset from the NWI and a database of wetlands not found in the NWI provided by the West Virginia Division of Natural Resources (WVDNR). The models produced area under the curve (AUC) values in excess of 0.90, and as high as 0.998. Models developed in one ecological subregion of the state produced significantly different AUC values when applied to other subregions, indicating that the topographical models should be extrapolated to new physiographic regions with caution. Several previously unexplored DEM-derived terrain variables were found to be of value, including distance from water bodies, roughness, and dissection. Non-NWI wetlands were mapped with an AUC value of 0.956, indicating that the probability maps may be useful for finding potential palustrine wetlands not found in the NWI . Numéro de notice : A2016-442 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.82.6.437 En ligne : http://dx.doi.org/10.14358/PERS.82.6.437 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81348
in Photogrammetric Engineering & Remote Sensing, PERS > vol 82 n° 6 (June 2016) . - pp 437 - 447[article]Combining RapidEye and lidar satellite imagery for mapping of mining and mine reclamation / Aaron E. Maxwell in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 2 (February 2014)
[article]
Titre : Combining RapidEye and lidar satellite imagery for mapping of mining and mine reclamation Type de document : Article/Communication Auteurs : Aaron E. Maxwell, Auteur ; Thimoty A. Warner, Auteur ; Michael P. Strager, Auteur Année de publication : 2014 Article en page(s) : pp 179 - 189 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] données lidar
[Termes IGN] image RapidEye
[Termes IGN] mine
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] séparateur à vaste marge
[Termes IGN] visualisation cartographiqueRésumé : (Auteur) The combination of RapidEye satellite imagery and light detection and ranging (lidar) derivatives was assessed for mapping land-cover within a mountaintop coal surface mine complex in the southern coalfields of West Virginia, USA. Support vector machines (SVM), random forests (RF), and boosted classification and regression trees (CART) algorithms were used. Incorporation of the lidar-derived data increased map accuracy in comparison to using only the five imagery bands, and SVM generally produced a more accurate classification than the ensemble tree algorithms based on overall map accuracy, Kappa statistics, allocation disagreement, quantity disagreement, and McNemar's test of statistical significance. Based on measures of predictor variable importance within the ensemble tree classifiers, the normalized digital surface model (nDSM) was found to be more useful than first return intensity data for differentiating the classes Numéro de notice : A2014-111 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.80.2.179-189 En ligne : https://doi.org/10.14358/PERS.80.2.179-189 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33016
in Photogrammetric Engineering & Remote Sensing, PERS > vol 80 n° 2 (February 2014) . - pp 179 - 189[article]