Détail de l'auteur
Auteur Bo Huang |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiresolution analysis pansharpening based on variation factor for multispectral and panchromatic images from different times / Peng Wang in IEEE Transactions on geoscience and remote sensing, vol 61 n° 3 (March 2023)
[article]
Titre : Multiresolution analysis pansharpening based on variation factor for multispectral and panchromatic images from different times Type de document : Article/Communication Auteurs : Peng Wang, Auteur ; Hongyu Yao, Auteur ; Bo Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5401217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] données multitemporelles
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Most pansharpening methods refer to the fusion of the original low-resolution multispectral (MS) and high-resolution panchromatic (PAN) images acquired simultaneously over the same area. Due to its good robustness, multiresolution analysis (MRA) has become one of the important categories of pansharpening methods. However, when only MS and PAN images acquired at different times can be provided, the fusion results from current MRA methods are often not ideal due to the failure to effectively analyze multitemporal misalignments between MS and PAN images from different times. To solve this issue, MRA pansharpening based on variation factor for MS and PAN images from different times is proposed. The MRA pansharpening based on dual-scale regression model is first established, and the variation factor is then introduced to effectively analyze the multitemporal misalignments by using the alternating direction method of multipliers (ADMM), yielding the final fusion results. Experiments with synthetic and real datasets show that the proposed method exhibits significant performance improvement compared to the traditional pansharpening methods, as well as the state-of-the-art MRA methods. Visual comparisons demonstrate that the variation factor introduces encouraging improvements in the compensation of multitemporal misalignments in ground objects and advances pansharpening applications for MS and PAN images acquired at different times. Numéro de notice : A2023-184 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3252001 En ligne : https://doi.org/10.1109/TGRS.2023.3252001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102956
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 3 (March 2023) . - n° 5401217[article]Unmixing-based spatiotemporal image fusion accounting for complex land cover changes / Xiaolu Jiang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 5 (May 2022)
[article]
Titre : Unmixing-based spatiotemporal image fusion accounting for complex land cover changes Type de document : Article/Communication Auteurs : Xiaolu Jiang, Auteur ; Bo Huang, Auteur Année de publication : 2022 Article en page(s) : n° 5623010 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] changement d'occupation du sol
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion d'images
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] réflectance spectrale
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) Spatiotemporal reflectance fusion has received considerable attention in recent decades. However, various challenges remain despite varying levels of success, especially regarding the recovery of spatial details with complex land cover changes. Taking the blending of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) images as an example, this article presents a locally weighted unmixing-based spatiotemporal image fusion model (LWU-STFM) that focuses on recovering complex land cover changes. The core idea is to redefine the land use class of each pixel featuring land cover change at the prediction date. The spatial unmixing process is enhanced using a proposed geographically spectrum-weighted regression (GSWR), and then, we optimize similar neighboring pixels for the final weighted-based prediction. Experiments are conducted using semisimulated and actual time-series Landsat–MODIS datasets to demonstrate the performance of the proposed LWU-STFM compared with the classic spatial and temporal adaptive reflectance fusion model (STARFM), flexible spatiotemporal data fusion (FSDAF), two enhanced FSDAF models (SFSDAF and FSDAF 2.0), and a virtual image pair-based spatiotemporal fusion model for spatial weighting (VIPSTF-SW). The results reveal that the proposed LWU-STFM outperforms the other five models with the best quantitative accuracy. In terms of the relative dimensionless global error (ERGAS) index, the errors of Landsat-like images generated using LWU-STFM are 2.8%–63.4% lower than those of other models. From visual comparisons, LWU-STFM predictions illustrate encouraging improvements in recovering spatial details of pixels with complex land cover changes in heterogeneous landscapes and, thus, advancing applications of spatiotemporal image fusion for continuous and fine-scale land surface monitoring. Numéro de notice : A2022-409 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3173172 Date de publication en ligne : 05/05/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3173172 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100744
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 5 (May 2022) . - n° 5623010[article]Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution / Huihui Song in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
[article]
Titre : Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution Type de document : Article/Communication Auteurs : Huihui Song, Auteur ; Bo Huang, Auteur ; Qingshan Liu, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1195 - 1204 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] couple stéréoscopique
[Termes IGN] dégradation d'image
[Termes IGN] fauchée
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image SPOT 5
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] résolution multipleRésumé : (Auteur) To take advantage of the wide swath width of Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images and the high spatial resolution of Système Pour l'Observation de la Terre 5 (SPOT5) images, we present a learning-based super-resolution method to fuse these two data types. The fused images are expected to be characterized by the swath width of TM/ETM+ images and the spatial resolution of SPOT5 images. To this end, we first model the imaging process from a SPOT image to a TM/ETM+ image at their corresponding bands, by building an image degradation model via blurring and downsampling operations. With this degradation model, we can generate a simulated Landsat image from each SPOT5 image, thereby avoiding the requirement for geometric coregistration for the two input images. Then, band by band, image fusion can be implemented in two stages: 1) learning a dictionary pair representing the high- and low-resolution details from the given SPOT5 and the simulated TM/ETM+ images; 2) super-resolving the input Landsat images based on the dictionary pair and a sparse coding algorithm. It is noteworthy that the proposed method can also deal with the conventional spatial and spectral fusion of TM/ETM+ and SPOT5 images by using the learned dictionary pairs. To examine the performance of the proposed method of fusing the swath width of TM/ETM+ and the spatial resolution of SPOT5, we illustrate the fusion results on the actual TM images and compare with several classic pansharpening methods by assuming that the corresponding SPOT5 panchromatic image exists. Furthermore, we implement the classification experiments on both actual images and fusion results to demonstrate the benefits of the proposed method for further classification applications. Numéro de notice : A2015-130 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2335818 Date de publication en ligne : 25/07/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2335818 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75793
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 3 (March 2015) . - pp 1195 - 1204[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015031 RAB Revue Centre de documentation En réserve L003 Disponible Spatial and spectral image fusion using sparse matrix factorization / Bo Huang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 3 (March 2014)
[article]
Titre : Spatial and spectral image fusion using sparse matrix factorization Type de document : Article/Communication Auteurs : Bo Huang, Auteur ; Huihui Song, Auteur ; Hengbin Cui, Auteur ; Jigen Peng, Auteur ; Zongben Xu, Auteur Année de publication : 2014 Article en page(s) : pp 1693 - 1704 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse combinatoire (maths)
[Termes IGN] apprentissage automatique
[Termes IGN] factorisation
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Terra-MODIS
[Termes IGN] matrice creuse
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] pouvoir de résolution spectraleRésumé : (Auteur) In this paper, we present a novel spatial and spectral fusion model (SASFM) that uses sparse matrix factorization to fuse remote sensing imagery with different spatial and spectral properties. By combining the spectral information from sensors with low spatial resolution (LSaR) but high spectral resolution (HSeR) (hereafter called HSeR sensors), with the spatial information from sensors with high spatial resolution (HSaR) but low spectral resolution (LSeR) (hereafter called HSaR sensors), the SASFM can generate synthetic remote sensing data with both HSaR and HSeR. Given two reasonable assumptions, the proposed model can integrate the LSaR and HSaR data via two stages. In the first stage, the model learns from the LSaR data a spectral dictionary containing pure signatures, and in the second stage, the desired HSaR and HSeR data are predicted using the learned spectral dictionary and the known HSaR data. The SASFM is tested with both simulated data and actual Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) acquisitions, and it is also compared to other representative algorithms. The experimental results demonstrate that the SASFM outperforms other algorithms in generating fused imagery with both the well-preserved spectral properties of MODIS and the spatial properties of ETM+. Generated imagery with simultaneous HSaR and HSeR opens new avenues for applications of MODIS and ETM+. Numéro de notice : A2014-115 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2253612 En ligne : https://doi.org/10.1109/TGRS.2013.2253612 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33020
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 3 (March 2014) . - pp 1693 - 1704[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014031 RAB Revue Centre de documentation En réserve L003 Disponible