Détail de l'auteur
Auteur Junwei Han |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning / Junwei Han in IEEE Transactions on geoscience and remote sensing, vol 53 n° 6 (June 2015)
[article]
Titre : Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning Type de document : Article/Communication Auteurs : Junwei Han, Auteur ; Dingwen Zhang, Auteur ; Gong Cheng, Auteur Année de publication : 2015 Article en page(s) : pp 3325 - 3337 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] détection d'objet
[Termes IGN] estimation bayesienne
[Termes IGN] état de l'art
[Termes IGN] moteur d'inférenceRésumé : (Auteur) The abundant spatial and contextual information provided by the advanced remote sensing technology has facilitated subsequent automatic interpretation of the optical remote sensing images (RSIs). In this paper, a novel and effective geospatial object detection framework is proposed by combining the weakly supervised learning (WSL) and high-level feature learning. First, deep Boltzmann machine is adopted to infer the spatial and structural information encoded in the low-level and middle-level features to effectively describe objects in optical RSIs. Then, a novel WSL approach is presented to object detection where the training sets require only binary labels indicating whether an image contains the target object or not. Based on the learnt high-level features, it jointly integrates saliency, intraclass compactness, and interclass separability in a Bayesian framework to initialize a set of training examples from weakly labeled images and start iterative learning of the object detector. A novel evaluation criterion is also developed to detect model drift and cease the iterative learning. Comprehensive experiments on three optical RSI data sets have demonstrated the efficacy of the proposed approach in benchmarking with several state-of-the-art supervised-learning-based object detection approaches. Numéro de notice : A2015 - 283 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2374218 Date de publication en ligne : 18/12/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2374218 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76400
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 6 (June 2015) . - pp 3325 - 3337[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015061 SL Revue Centre de documentation Revues en salle Disponible Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding / Junwei Han in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
[article]
Titre : Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding Type de document : Article/Communication Auteurs : Junwei Han, Auteur ; Peicheng Zhou, Auteur ; Dingwen Zhang, Auteur ; Gong Cheng, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 37 - 48 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage automatique
[Termes IGN] détection de cible
[Termes IGN] données localisées
[Termes IGN] image optique
[Termes IGN] matrice d'information de Fischer
[Termes IGN] modèle de simulation
[Termes IGN] reliefRésumé : (Auteur) Automatic detection of geospatial targets in cluttered scenes is a profound challenge in the field of aerial and satellite image analysis. In this paper, we propose a novel practical framework enabling efficient and simultaneous detection of multi-class geospatial targets in remote sensing images (RSI) by the integration of visual saliency modeling and the discriminative learning of sparse coding. At first, a computational saliency prediction model is built via learning a direct mapping from a variety of visual features to a ground truth set of salient objects in geospatial images manually annotated by experts. The output of this model can predict a small set of target candidate areas. Afterwards, in contrast with typical models that are trained independently for each class of targets, we train a multi-class object detector that can simultaneously localize multiple targets from multiple classes by using discriminative sparse coding. The Fisher discrimination criterion is incorporated into the learning of a dictionary, which leads to a set of discriminative sparse coding coefficients having small within-class scatter and big between-class scatter. Multi-class classification can be therefore achieved by the reconstruction error and discriminative coding coefficients. Finally, the trained multi-class object detector is applied to those target candidate areas instead of the entire image in order to classify them into various categories of target, which can significantly reduce the cost of traditional exhaustive search. Comprehensive evaluations on a satellite RSI database and comparisons with a number of state-of-the-art approaches demonstrate the effectiveness and efficiency of the proposed work. Numéro de notice : A2014-123 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33028
in ISPRS Journal of photogrammetry and remote sensing > vol 89 (March 2014) . - pp 37 - 48[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014031 RAB Revue Centre de documentation En réserve L003 Disponible