Détail de l'auteur
Auteur Peicheng Zhou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding / Junwei Han in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)
[article]
Titre : Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding Type de document : Article/Communication Auteurs : Junwei Han, Auteur ; Peicheng Zhou, Auteur ; Dingwen Zhang, Auteur ; Gong Cheng, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 37 - 48 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage automatique
[Termes IGN] détection de cible
[Termes IGN] données localisées
[Termes IGN] image optique
[Termes IGN] matrice d'information de Fischer
[Termes IGN] modèle de simulation
[Termes IGN] reliefRésumé : (Auteur) Automatic detection of geospatial targets in cluttered scenes is a profound challenge in the field of aerial and satellite image analysis. In this paper, we propose a novel practical framework enabling efficient and simultaneous detection of multi-class geospatial targets in remote sensing images (RSI) by the integration of visual saliency modeling and the discriminative learning of sparse coding. At first, a computational saliency prediction model is built via learning a direct mapping from a variety of visual features to a ground truth set of salient objects in geospatial images manually annotated by experts. The output of this model can predict a small set of target candidate areas. Afterwards, in contrast with typical models that are trained independently for each class of targets, we train a multi-class object detector that can simultaneously localize multiple targets from multiple classes by using discriminative sparse coding. The Fisher discrimination criterion is incorporated into the learning of a dictionary, which leads to a set of discriminative sparse coding coefficients having small within-class scatter and big between-class scatter. Multi-class classification can be therefore achieved by the reconstruction error and discriminative coding coefficients. Finally, the trained multi-class object detector is applied to those target candidate areas instead of the entire image in order to classify them into various categories of target, which can significantly reduce the cost of traditional exhaustive search. Comprehensive evaluations on a satellite RSI database and comparisons with a number of state-of-the-art approaches demonstrate the effectiveness and efficiency of the proposed work. Numéro de notice : A2014-123 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2013.12.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2013.12.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33028
in ISPRS Journal of photogrammetry and remote sensing > vol 89 (March 2014) . - pp 37 - 48[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014031 RAB Revue Centre de documentation En réserve L003 Disponible