Détail de l'auteur
Auteur Roland Pail |
Documents disponibles écrits par cet auteur (10)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Efficient variance component estimation for large-scale least-squares problems in satellite geodesy / Yufeng Nie in Journal of geodesy, vol 96 n° 2 (February 2022)
[article]
Titre : Efficient variance component estimation for large-scale least-squares problems in satellite geodesy Type de document : Article/Communication Auteurs : Yufeng Nie, Auteur ; Yunzhong Shen, Auteur ; Roland Pail, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse de variance
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] estimation statistique
[Termes IGN] GRACE
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle stochastiqueRésumé : (auteur) Efficient Variance Component Estimation (VCE) is significant to optimal data combination in large-scale least-squares problems as those encountered in satellite geodesy, where millions of observations are jointly processed to estimate a huge number of unknown parameters. In this paper, an efficient VCE algorithm with rigorous trace calculation is proposed based on the local–global parameters partition scheme in satellite geodesy, which is directly applicable to both the simplified yet common case where local parameters are unique to a single observation group and the generalized case where local parameters are shared by different groups of observations. Moreover, the Monte-Carlo VCE (MCVCE) algorithm, based on the stochastic trace estimation technique, is further extended in this paper to the generalized case. Two numerical simulation cases are investigated for gravity field model recovery to evaluate both the accuracy and efficiency of the proposed algorithm and the extended MCVCE algorithm in terms of trace calculation. Compared to the conventional algorithm, the relative trace calculation errors in the efficient algorithm are all negligibly below 10–7%, while in the MCVCE algorithm they can vary from 0.6 to 37% depending on the number of adopted random vector realizations and the specific applications. The efficient algorithm can achieve computational time reduction rates above 96% compared to the conventional algorithm for all gravity field model sizes considered in the paper. In the MCVCE algorithm, however, the time reduction rates can change from 61 to 99% for different implementations. Numéro de notice : A2022-186 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01599-9 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1007/s00190-022-01599-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99907
in Journal of geodesy > vol 96 n° 2 (February 2022) . - n° 13[article]Integration of airborne gravimetry data filtering into residual least-squares collocation: example from the 1 cm geoid experiment / Martin Willberg in Journal of geodesy, vol 94 n° 8 (August 2020)
[article]
Titre : Integration of airborne gravimetry data filtering into residual least-squares collocation: example from the 1 cm geoid experiment Type de document : Article/Communication Auteurs : Martin Willberg, Auteur ; Philipp Zingerle, Auteur ; Roland Pail, Auteur Année de publication : 2020 Article en page(s) : n° 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] collocation par moindres carrés
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] filtre passe-bas
[Termes IGN] géoïde gravimétrique
[Termes IGN] géoïde local
[Termes IGN] gravimétrie aérienne
[Termes IGN] levé gravimétrique
[Termes IGN] modèle stochastique
[Termes IGN] pondération
[Termes IGN] processus gaussienRésumé : (auteur) Low-pass filters are commonly used for the processing of airborne gravity observations. In this paper, for the first time, we include the resulting correlations consistently in the functional and stochastic model of residual least-squares collocation. We demonstrate the necessity of removing high-frequency noise from airborne gravity observations, and derive corresponding parameters for a Gaussian low-pass filter. Thereby, we intend an optimal combination of terrestrial and airborne gravity observations in the mountainous area of Colorado. We validate the combination in the frame of our participation in ‘the 1 cm geoid experiment’. This regional geoid modeling inter-comparison exercise allows the calculation of a reference solution, which is defined as the mean value of 13 independent height anomaly results in this area. Our result performs among the best and with 7.5 mm shows the lowest standard deviation to the reference. From internal validation we furthermore conclude that the input from airborne and terrestrial gravity observations is consistent in large parts of the target area, but not necessarily in the highly mountainous areas. Therefore, the relative weighting between these two data sets turns out to be a main driver for the final result, and is an important factor in explaining the remaining differences between various height anomaly results in this experiment. Numéro de notice : A2020-536 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01396-2 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.1007/s00190-020-01396-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95729
in Journal of geodesy > vol 94 n° 8 (August 2020) . - n° 75[article]Evaluation of terrestrial and airborne gravity data over Antarctica : a generic approach / Philipp Zingerle in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Evaluation of terrestrial and airborne gravity data over Antarctica : a generic approach Type de document : Article/Communication Auteurs : Philipp Zingerle, Auteur ; Roland Pail, Auteur ; M. Scheinert, Auteur ; T. Schaller, Auteur Année de publication : 2019 Article en page(s) : pp 29 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] Antarctique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données localisées 3D
[Termes IGN] levé gravimétrique
[Termes IGN] modèle de géopotentielRésumé : (auteur) The AntGrav project, funded by the German Research Foundation (DFG) has the main objective to homogenize and optimize Antarctic gravity field information. Within this project an evaluation procedure is needed to inspect all different kind of gravity field surveys available in Antarctica. In this paper a suitable methodology is proposed.
We present an approach for fast 3D gravity point data reduction in different spectral bands. This is achieved through pre-calculating a fine 3D mesh of synthesized gravity functionals over the entirety of the Antarctic continent, for which two different global models are used: the combined satellite model GOCO05s for the long-wavelength part, and the topographic model Earth2014 for the shorter wavelengths. To maximize the applicability separate meshes are calculated for different spectral bands in order to specifically reduce a certain band or a selected combination. All meshes are calculated for gravity anomalies as well as gravity disturbances. Utilizing these meshes, synthesized gravity data at arbitrary positions is computed by conventional 3D interpolation methods (e.g. linear, cubic or spline).
It is shown that the applied approach can reach a worst-case interpolation error of less than 1 mGal. Evaluation results are presented for the AntGG grid and exemplary for the in-situ measurements of the AGAP and BAS-LAND campaigns. While general properties, large-scale errors and systematic effects can usually be detected, small-scale errors (e.g. of single points) are mostly untraceable due to the uncertainties within the topographic model.Numéro de notice : A2019-408 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2019-0004 Date de publication en ligne : 19/08/2019 En ligne : https://doi.org/10.1515/jogs-2019-0004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93526
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 29 - 40[article]Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space / Roland Pail in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space Type de document : Article/Communication Auteurs : Roland Pail, Auteur ; Jonathan Bamber, Auteur ; Richard Biancale, Auteur ; Rory Bingham, Auteur ; Carla Braitenberg, Auteur ; Annette Eicker, Auteur ; Frank Flechtner, Auteur ; Thomas Gruber, Auteur ; Andreas Güntner, Auteur ; Gerhard Heinzel, Auteur ; Martin Horwath, Auteur ; Laurent Longuevergne, Auteur ; J. Muller, Auteur ; Isabelle Panet , Auteur ; Hubert Savenije, Auteur ; S. Seneviratne, Auteur ; Nico Sneeuw, Auteur ; Tonie M. van Dam, Auteur ; Bert Wouters, Auteur Année de publication : 2019 Projets : 1-Pas de projet / Article en page(s) : pp 48 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] gravimétrie spatiale
[Termes IGN] harmonique sphérique
[Termes IGN] masseRésumé : (auteur) As changes in gravity are directly related to mass variability, satellite missions observing the Earth’s time varying gravity field are a unique tool for observing mass transport processes in the Earth system, such as the water cycle, rapid changes in the cryosphere, oceans, and solid Earth processes, on a global scale. The observation of Earth’s gravity field was successfully performed by the GRACE and GOCE satellite missions, and will be continued by the GRACE Follow-On mission. A comprehensive team of European scientists proposed the next-generation gravity field mission MOBILE in response to the European Space Agency (ESA) call for a Core Mission in the frame of Earth Explorer 10 (EE10). MOBILE is based on the innovative observational concept of a high-low tracking formation with micrometer ranging accuracy, complemented by new instrument concepts. Since a high-low tracking mission primarily observes the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic. This geometry significantly reduces artefacts of previous along-track ranging low-low formations (GRACE, GRACE-Follow-On) such as the typical striping patterns. The minimum configuration consists of at least two medium-Earth orbiters (MEOs) at 10000 km altitude or higher, and one low-Earth orbiter (LEO) at 350-400 km. The main instrument is a laser-based distance or distance change measurement system, which is placed at the LEO. The MEOs are equipped either with passive reflectors or transponders. In a numerical closed-loop simulation, it was demonstrated that this minimum configuration is in agreement with the threshold science requirements of 5 mm equivalent water height (EWH) accuracy at 400 km wavelength, and 10 cm EWH at 200 km. MOBILE provides promising potential future perspectives by linking the concept to existing space infrastructure such as Galileo next-generation, as future element of the Copernicus/Sentinel programme, and holds the potential of miniaturization even up to swarm configurations. As such MOBILE can be considered as a precursor and role model for a sustained mass transport observing system from space. Numéro de notice : A2019-635 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2019-0006 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1515/jogs-2019-0006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95454
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 48 - 58[article]
Titre : Gravity field processing towards LL-SST satellite missions Type de document : Thèse/HDR Auteurs : Ilias Daras, Auteur ; Roland Pail, Directeur de thèse Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2016 Collection : DGK - C, ISSN 0065-5325 num. 770 Importance : 153 p. ISBN/ISSN/EAN : 978-3-7696-5182-9 Note générale : bibliographie
PhD DissertationLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] accéléromètre
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] crénelage
[Termes IGN] filtrage du bruit
[Termes IGN] gravimétrie spatiale
[Termes IGN] interféromètre au laser
[Termes IGN] poursuite de satellite
[Termes IGN] résidu
[Termes IGN] satellite d'observation de la TerreRésumé : (auteur) This study focuses on important aspects concerning gravity field processing of future LL-SST [Low-Low Satellite-to-Satellite Tracking] satellite missions. Closed-loop simulations taking into account error models of new generation instrument technology are used to estimate the gravity field accuracy that future missions could provide. Limiting factors are identified, and methods for their treatment are developed. The contribution of all error sources to the error budget is analyzed. It is shown that gravity field processing with double precision may be a limiting factor for exploiting the nm-level accuracy of a laser interferometer. An enhanced numerical precision processing scheme is proposed instead, where double and quadruple precision is used in different parts of the processing chain. It is demonstrated that processing with enhanced precision can efficiently handle laser measurements and take full advantage of their accuracy, while keeping the computational times within reasonable levels. However, error sources of considerably larger impact are expected to affect future missions, with the accelerometer instrument noise and temporal aliasing effects being the most significant ones. The effect of time-correlated noise such as the one present in accelerometer measurements, can be efficiently handled by frequency dependent data weighting. Residual time series that contain the effect of system errors and propagated accelerometer and laser noise, is considered as a noise realization with stationary stochastic properties. The weight matrix is constructed from the auto-correlation functions of these residuals. Applying the weight matrix to a noise case considering all error sources leads to reduction of the error level over the complete spectral bandwidth. Co-estimation of empirical accelerations does not show the same efficiency in reducing the propagated noise with the applied processing strategy. Temporal aliasing effects are reduced essentially by adding a second pair of satellites at an inclined orbit. Compared to a GRACE-type near-polar pair, such a Bender-type constellation delivers solutions with major improvements in terms of de-aliasing potential and recovery performance. When the integrated effect of all geophysical processes is recovered, the maximum spatial resolution of 11-day solutions can be increased from 715 to 315 km half-wavelength. A further reduction of temporal aliasing errors is possible by co-parameterizing low resolution gravity fields at short time intervals, together with the higher resolution gravity field which is sampled at a longer time interval. One day was found to be the optimal sampling period for reducing the error levels in the solutions. A uniform sampling at the co-parameterized short periods, is a prerequisite for an efficient reduction of aliasing errors. High frequency atmospheric signals are captured by daily solutions to a large extent. Hence co-parameterization at daily basis results in significant reduction of aliasing caused by their under-sampling. This enables future gravity satellite missions to deliver the complete spectrum of Earth's geophysical processes. The corresponding by-products of daily gravity field solutions are expected to be very useful to atmospheric science and open doors to new fields of application. Note de contenu : 1. Introduction
1.1. Background
1.2. Motivation and objectives of this study
1.3. Outline
2. Earth's gravity field determination form satellite observations
2.1. Pertubing forces acting on a satellite
2.2. Geopotential and its functionals
2.3. Dedicated gravity satellite missions
2.4. Concepts for future satellite gravity missions
3. Description of the simulation environment for the gravity fields recovery
3.1. Outline of the simulation environment
3.2. Coordinate and time systems
3.3. Simulation if the satellite orbits
3.4. Functional model
3.5. Formulation of the NEQ system
3.6. Solution of the NEQ system
4. Design aspects and error budget of future dedicated gravity satellite missions
4.1. Orbit design
4.2. Satellite formation flights
4.3. Selected orbits for the simulations
4.4. Science and mission requirements
4.5. Noise models for the performance of the instruments
4.6. Error budget analysis
7. Treatment of temporal aliasing effects
7.1. Temporal aliasing for NGGLs
7.2. Co-parameterization of low spatial resolution gravity fiels solutions at higher frequencies
7.3. Retrieval content of NGGM gravity fiels solutions
8. ConclusionsNuméro de notice : 19791 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : PhD Dissertation : Geodesy : Stuttgart : 2016 DOI : sans En ligne : http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160211-1279854-1-3 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85011 Science and user needs for observing global mass transport to understand global change and to benefit society / Roland Pail in Surveys in Geophysics, vol 36 n° 6 (November 2015)PermalinkGravity field processing with enhanced numerical precision for LL-SST missions / Ilias Daras in Journal of geodesy, vol 89 n° 2 (February 2015)PermalinkPermalinkEvaluation of the third- and fourth-generation GOCE Earth gravity field models with Australian terrestrial gravity data in spherical harmonics / Moritz Rexer in Journal of geodesy, vol 88 n° 4 (April 2014)PermalinkAlternative method for angular rate determination within the GOCE gradiometer processing / C. Stummer in Journal of geodesy, vol 85 n° 9 (September 2011)Permalink