Détail de l'auteur
Auteur Binbin He |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
CSVM architectures for pixel-wise object detection in high-resolution remote sensing images / Youyou Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
[article]
Titre : CSVM architectures for pixel-wise object detection in high-resolution remote sensing images Type de document : Article/Communication Auteurs : Youyou Li, Auteur ; Farid Melgani, Auteur ; Binbin He, Auteur Année de publication : 2020 Article en page(s) : pp 6059 - 6070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image captée par drone
[Termes IGN] processeur graphiqueRésumé : (auteur) Detecting objects becomes an increasingly important task in very high resolution (VHR) remote sensing imagery analysis. With the development of GPU-computing capability, a growing number of deep convolutional neural networks (CNNs) have been designed to address the object detection challenge. However, compared with CPU, GPU is much more costly. Therefore, GPU-based methods are less attractive in practical applications. In this article, we propose a CPU-based method that is based on convolutional support vector machines (CSVMs) to address the object detection challenge in VHR images. Experiments are conducted on three VHR and two unmanned aerial vehicle (UAV) data sets with very limited training data. Results show that the proposed CSVM achieves competitive performance compared to U-Net which is an efficient CNN-based model designed for small training data sets. Numéro de notice : A2020-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2972289 Date de publication en ligne : 02/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2972289 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95705
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6059 - 6070[article]Potential of texture from SAR tomographic images for forest aboveground biomass estimation / Zhanmang Liao in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
[article]
Titre : Potential of texture from SAR tomographic images for forest aboveground biomass estimation Type de document : Article/Communication Auteurs : Zhanmang Liao, Auteur ; Binbin He, Auteur ; Xingwen Quan, Auteur Année de publication : 2020 Article en page(s) : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse texturale
[Termes IGN] bande P
[Termes IGN] biomasse aérienne
[Termes IGN] canopée
[Termes IGN] image radar moirée
[Termes IGN] rétrodiffusion
[Termes IGN] tomographie radarRésumé : (auteur) Synthetic Aperture Radar (SAR) texture has been demonstrated to have the potential to improve forest biomass estimation using backscatter. However, forests are 3D objects with a vertical structure. The strong penetration of SAR signals means that each pixel contains the contributions of all the scatterers inside the forest canopy, especially for the P-band. Consequently, the traditional texture derived from SAR images is affected by forest vertical heterogeneity, although the influence on texture-based biomass estimation has not yet been explicitly explored. To separate and explore the influence of forest vertical heterogeneity, we introduced the SAR tomography technique into the traditional texture analysis, aiming to explore whether TomoSAR could improve the performance of texture-based aboveground biomass (AGB) estimation and whether texture plus tomographic backscatter could further improve the TomoSAR-based AGB estimation. Based on the P-band TomoSAR dataset from TropiSAR 2009 at two different sites, the results show that ground backscatter variance dominated the texture features of the original SAR image and reduced the biomass estimation accuracy. The texture from upper vegetation layers presented a stronger correlation with forest biomass. Texture successfully improved tomographic backscatter-based biomass estimation, and the texture from upper vegetation layers made AGB models much more transferable between different sites. In addition, the correlation between texture indices varied greatly among different tomographic heights. The texture from the 10 to 30 m layers was able to provide more independent information than the other layers and the original images, which helped to improve the backscatter-based AGB estimation. Numéro de notice : A2020-447 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2020.102049 Date de publication en ligne : 12/02/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102049 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95523
in International journal of applied Earth observation and geoinformation > vol 88 (June 2020) . - 15 p.[article]Assessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data / Long Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
[article]
Titre : Assessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data Type de document : Article/Communication Auteurs : Long Wang, Auteur ; Binbin He, Auteur ; Xiaojing Bai, Auteur ; Minfeng Xing, Auteur Année de publication : 2019 Article en page(s) : pp 43 - 54 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Enhanced vegetation index
[Termes IGN] étalonnage de modèle
[Termes IGN] humidité du sol
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice foliaire
[Termes IGN] Iowa (Etats-Unis)
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de rétrodiffusion
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelleRésumé : (auteur) Soil moisture is an important state variable of the land surface ecosystem. In this paper, the water cloud model (WCM) and advanced integral equation model (AIEM) are coupled to retrieve soil moisture using time series Sentinel-1A data and moderate resolution imaging spectroradiometer (MODIS) data. Normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR), are cross-combined to initialize the calibrated model. The calibration results show the following: (1) Vegetation parameters have a great influence on model calibration; and (2) The combination of (NDVI, LAI) is recommended to calibrate the coupled model, the RMSE, R2 is 0.739 dB, and 0.716 for the observed and estimated backscattering coefficients. The soil moisture inversion results show that: (1) the accuracy of model calibration and soil moisture inversion are inconsistent; and (2) The normalized vegetation parameters, such as NDVI, EVI and FPAR, are suitable for WCM to describe vegetation characteristics, and NDVI is the optimum. When V2 is the NDVI, the average bias, MAE, RMSE, ubRMSE and R2 are –0.007 m3/m3, 0.074 m3/m3, 0.087 m³/m³, 0.087 m3/m3 and 0.750, respectively. Numéro de notice : A2019-029 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.1.43 Date de publication en ligne : 01/01/2019 En ligne : https://doi.org/10.14358/PERS.85.1.43 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91965
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 1 (January 2019) . - pp 43 - 54[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019011 SL Revue Centre de documentation Revues en salle Disponible Retrieving grassland canopy water content by considering the information from neighboring pixels / Binbin He in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 8 (August 2017)
[article]
Titre : Retrieving grassland canopy water content by considering the information from neighboring pixels Type de document : Article/Communication Auteurs : Binbin He, Auteur ; Xingwen Quan, Auteur ; Dasong Xu, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 553 - 565 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] classification barycentrique
[Termes IGN] classification pixellaire
[Termes IGN] modèle de transfert radiatif
[Termes IGN] prairie
[Termes IGN] réponse spectrale
[Termes IGN] teneur en eau liquideRésumé : (auteur) Accurate and robust retrieval of grassland canopy water content (CWC) using a radiative transfer model (RTM) is generally affected by the ill-posed inversion problem due to the lack of enough available a priori information. To alleviate this problem when inversing the RTM, a two-step inversion method was proposed. The key point of this method was to simultaneously consider the spectral information from neighboring pixels and the spatial dependency among these pixels, with the purpose to win more information from these neighboring pixels. The proposed methodology was then applied to retrieve CWC using the PROSAIL RTM from Landsat-8 OLI data for a plateau grassland in China. The results showed that the estimated CWC using the proposed method (RMSE = 67.31 g m-2 and R2 = 0.81) was better than that from the traditional method (RMSE = 80.11 g m-2 and R2 = 0.78) which only considered the information of single pixel. Numéro de notice : A2017-436 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.8.553 En ligne : https://doi.org/10.14358/PERS.83.8.553 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86340
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 8 (August 2017) . - pp 553 - 565[article]A Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval / Xingwen Quan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)
[article]
Titre : A Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval Type de document : Article/Communication Auteurs : Xingwen Quan, Auteur ; Binbin He, Auteur ; Xing Li, Auteur Année de publication : 2015 Article en page(s) : pp 6507 - 6517 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] appariement d'images
[Termes IGN] image Landsat-8
[Termes IGN] Leaf Area Index
[Termes IGN] probabilité
[Termes IGN] problème inverse
[Termes IGN] réseau bayesien
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Retrieval of vegetation parameters from remotely sensed data using a radiative transfer model is generally hampered by the ill-posed inverse problem, which dramatically decreases the precision level of retrieved parameters. The purpose of this study was to use a Bayesian network-based method to allow the alleviation of the ill-posed inverse problem. This was achieved by introducing the correlations between the model free parameters into their prior joint probability distribution (PJPD), allowing the reduction of the probabilities of unrealistic combinations. Three sampling strategies intended to design three types of PJPDs that considered different correlations (represented by a correlation matrix) were presented. They were multivariate uniform distribution composed by independent free parameters, multivariate uniform distribution based on a simple correlation matrix, and multivariate Gaussian distribution based on a complicated correlation matrix, respectively. A case study of the presented method to retrieve leaf area index (LAI) and canopy water content (CWC) using the PROSAIL_5B (PROSPECT-5 + 4SAIL) model from Landsat 8 products was implemented. Results indicate that the presented method greatly improves the precision level of target parameters, with the coefficient of determination R2 of 0.69, 0.77, and 0.82 and root-mean-square error (RMSE) of 0.55, 0.51, and 0.44 m2 · m-2 for LAI and R2 = 0.68, 0.78, and 0.84 and RMSE = 230, 198, and 166 g · m-2 for CWC, respectively. Hence, the ill-posed inverse problem can be alleviated by the presented method, which can be widely applied for vegetation parameters retrieval. Numéro de notice : A2015-838 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2442999 Date de publication en ligne : 30/06/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2442999 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79172
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 12 (December 2015) . - pp 6507 - 6517[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015121 SL Revue Centre de documentation Revues en salle Disponible An extended approach for biomass estimation in a mixed vegetation area using ASAR and TM data / Minfeng Xing in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 5 (May 2014)Permalink