Détail de l'auteur
Auteur Xiaowen Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An extended approach for biomass estimation in a mixed vegetation area using ASAR and TM data / Minfeng Xing in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 5 (May 2014)
[article]
Titre : An extended approach for biomass estimation in a mixed vegetation area using ASAR and TM data Type de document : Article/Communication Auteurs : Minfeng Xing, Auteur ; Binbin He, Auteur ; Xingwen Quan, Auteur ; Xiaowen Li, Auteur Année de publication : 2014 Article en page(s) : pp 429 - 438 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse (combustible)
[Termes IGN] image Envisat-ASAR
[Termes IGN] image Landsat-TM
[Termes IGN] télédétection en hyperfréquence
[Termes IGN] végétationRésumé : (Auteur) The use of microwave remote sensing for estimating vegeta-tion biomass is limited in arid regions because of the het-erogeneous distribution of vegetation, variable scattering mechanisms from different vegetation components, and the strong influence from underlying ground surface. In order to minimize this problem, a synergistic method of optical and microwave remote sensing data for the retrieval of aboveg-round biomass (agb) based on the modified water cloud model (WCM) was developed in this paper. Vegetation cover-age which can be easily estimated from optical data as ad-ditional information was combined in this method. Dimidiate pixel model (dpm) and phenological subtraction methodology (psm) were used to estimate vegetation coverage and differen--tiate vegetation types in the sub-pixel domain, respectively. The percentage cover of unmixed vegetation was incorporated to minimize problems associated with heterogeneous vegeta-tion and sparse vegetation cover. Finally, the accuracy and sources of error in this novel AGB retrieval method were evalu-ated. The results showed that the predicted AGB correlated with the measured AGB (R2 = 0.8007; RMSE = 0.2808 kg/m2). Numéro de notice : A2014-241 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14358/PERS.80.5.429 En ligne : https://doi.org/10.14358/PERS.80.5.429 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33144
in Photogrammetric Engineering & Remote Sensing, PERS > vol 80 n° 5 (May 2014) . - pp 429 - 438[article]