Détail de l'autorité
ICRA 2019, International Conference on Robotics and Automation 20/05/2019 24/05/2019 Montréal Québec - Canada Proceedings IEEE
nom du congrès :
ICRA 2019, International Conference on Robotics and Automation
début du congrès :
20/05/2019
fin du congrès :
24/05/2019
ville du congrès :
Montréal
pays du congrès :
Québec - Canada
site des actes du congrès :
|
Documents disponibles (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : Learning scene geometry for visual localization in challenging conditions Type de document : Article/Communication Auteurs : Nathan Piasco , Auteur ; Désiré Sidibé, Auteur ; Valérie Gouet-Brunet , Auteur ; Cédric Demonceaux, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2019 Projets : PLaTINUM / Gouet-Brunet, Valérie Conférence : ICRA 2019, International Conference on Robotics and Automation 20/05/2019 24/05/2019 Montréal Québec - Canada Proceedings IEEE Importance : pp 9094 - 9100 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse visuelle
[Termes IGN] appariement d'images
[Termes IGN] carte de profondeur
[Termes IGN] descripteur
[Termes IGN] géométrie de l'image
[Termes IGN] image RVB
[Termes IGN] localisation basée vision
[Termes IGN] précision de localisation
[Termes IGN] prise de vue nocturne
[Termes IGN] robotique
[Termes IGN] scène urbaine
[Termes IGN] variation diurne
[Termes IGN] variation saisonnière
[Termes IGN] vision par ordinateurRésumé : (auteur) We propose a new approach for outdoor large scale image based localization that can deal with challenging scenarios like cross-season, cross-weather, day/night and longterm localization. The key component of our method is a new learned global image descriptor, that can effectively benefit from scene geometry information during training. At test time, our system is capable of inferring the depth map related to the query image and use it to increase localization accuracy. We are able to increase recall@1 performances by 2.15% on cross-weather and long-term localization scenario and by 4.24% points on a challenging winter/summer localization sequence versus state-of-the-art methods. Our method can also use weakly annotated data to localize night images across a reference dataset of daytime images. Numéro de notice : C2019-002 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/ICRA.2019.8794221 Date de publication en ligne : 12/08/2019 En ligne : http://doi.org/10.1109/ICRA.2019.8794221 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93774 Documents numériques
en open access
Learning scene geometry... - pdf auteurAdobe Acrobat PDF