Détail de l'auteur
Auteur Matti Maltamo |
Documents disponibles écrits par cet auteur (22)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning / Diogo N. Cosenza in Canadian Journal of Forest Research, Vol 52 n° 3 (March 2022)
[article]
Titre : Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning Type de document : Article/Communication Auteurs : Diogo N. Cosenza, Auteur ; Petteri Packalen, Auteur ; Matti Maltamo, Auteur ; Petri Varvia, Auteur ; Janne Raty, Auteur ; Paola Soares, Auteur ; Margarida Tomé, Auteur ; Jacob L. Strunk, Auteur ; Lauri Korhonen, Auteur Année de publication : 2022 Article en page(s) : pp 385 - 395 Note générale : bibliographie Langues : Français (fre) Anglais (eng) Descripteur : [Termes IGN] forêt boréale
[Termes IGN] lasergrammétrie
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ordinary least squares regression (OLS), generalized additive models (GAM), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machine (SVM), and Gaussian process regression (GPR). We modeled timber volume (m3·ha–1) for four boreal sites using ABA with 2–39 predictors and 20–500 training plots. OLS, GAM, LASSO, and SVM overfitted as the number of predictors approached the number of training plots. They required ≥15 plots per predictor to provide accurate predictions (RMSE ≤30%). GAM required ≥250 plots regardless of the number of predictors. The number of predictors only mildly affected RF and GPR, but they required ≥200 and ≥250 training plots, respectively. RF did not overfit in any circumstances, whereas GPR overfit even with 500 training plots. Overall, using up to 39 predictors did not generally result in overfit, and for most model types, it resulted in better accuracy for sufficiently large datasets (≥250 plots). Numéro de notice : A2022-948 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1139/cjfr-2021-0192 En ligne : https://doi.org/10.1139/cjfr-2021-0192 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100413
in Canadian Journal of Forest Research > Vol 52 n° 3 (March 2022) . - pp 385 - 395[article]100 years of national forest inventories - editorial / Matti Maltamo in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : 100 years of national forest inventories - editorial Type de document : Article/Communication Auteurs : Matti Maltamo, Auteur Année de publication : 2021 Article en page(s) : n° 10643 Note générale : bibliographie Langues : Anglais (eng) Résumé : (auteur) Editorial : National Forest Inventories (NFI) are reaching the 100 years time span. Starting from Norway in 1919 (Breidenbach et al. 2021) the establishment of the NFI followed in other counties, including Finland in 1921. Now, hundred years later, it is time to look back, the current state and the future, and celebrate. The background for the NFI was in many cases the threat of overexploitation and lack of information on the availability of timber for future harvest. During the decades many other metrics, such as forest health, biological diversity, and nowadays most noteworthy forests’ ability to absorb and store carbon, have influenced on the NFI from planning of the measurements to the calculation of the results. These changes have not only concerned the topics of the forest policy but also development in sampling frames, plot shapes and more technical aspects such as the positioning of field plots and the emergence of the role of remote sensing information, just to mention a few. It is also clear that the role of NFI will remain and even increase in the future when improved forest resource information is more and more useful for planning policies aimed at mitigating the climate change. Numéro de notice : A2021-734 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.14214/sf.10643 Date de publication en ligne : 29/09/2021 En ligne : https://doi.org/10.14214/sf.10643 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98690
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10643[article]Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds / Alwin A. Hardenbol in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Detection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds Type de document : Article/Communication Auteurs : Alwin A. Hardenbol, Auteur ; Anton Kuzmin, Auteur ; Lauri Korhonen, Auteur ; Pasi Korpelainen, Auteur ; Timo Kumpula, Auteur ; Matti Maltamo, Auteur ; Jari Kouki, Auteur Année de publication : 2021 Article en page(s) : n° 10515 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse discriminante
[Termes IGN] Betula (genre)
[Termes IGN] détection d'arbres
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] orthoimage couleur
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Populus tremula
[Termes IGN] semis de points
[Termes IGN] variation saisonnièreRésumé : (auteur) Current remote sensing methods can provide detailed tree species classification in boreal forests. However, classification studies have so far focused on the dominant tree species, with few studies on less frequent but ecologically important species. We aimed to separate European aspen (Populus tremula L.), a biodiversity-supporting tree species, from the more common species in European boreal forests (Pinus sylvestris L., Picea abies [L.] Karst., Betula spp.). Using multispectral drone images collected on five dates throughout one thermal growing season (May–September), we tested the optimal season for the acquisition of mono-temporal data. These images were collected from a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented crowns manually and automatically and classified the species by linear discriminant analysis. The highest overall classification accuracy (95%) for the four species as well as the highest classification accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy was achieved on 27 September during the autumn senescence period. This is potentially caused by high intraspecific variation in aspen autumn coloration but may also be related to our date of acquisition. Our findings indicate that multispectral drone images collected in spring can be used to locate and classify less frequent tree species highly accurately. The temporal variation in leaf and canopy appearance can alter the detection accuracy considerably. Numéro de notice : A2021-735 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10515 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.14214/sf.10515 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98691
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10515[article]Horvitz-Thompson–like estimation with distance-based detection probabilities for circular plot sampling of forests / Kasper Kansanen in Biometrics, vol 77 n° 2 (June 2021)
[article]
Titre : Horvitz-Thompson–like estimation with distance-based detection probabilities for circular plot sampling of forests Type de document : Article/Communication Auteurs : Kasper Kansanen, Auteur ; Petteri Packalen, Auteur ; Matti Maltamo, Auteur ; Lauri Mehtätalo, Auteur Année de publication : 2021 Article en page(s) : pp 715 - 728 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] distribution de Poisson
[Termes IGN] erreur systématique
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] placette d'échantillonnage
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) In circular plot sampling, trees within a given distance from the sample plot location constitute a sample, which is used to infer characteristics of interest for the forest area. If the sample is collected using a technical device located at the sampling point, eg, a terrestrial laser scanner, all trees of the sample plot cannot be observed because they hide behind each other. We propose a Horvitz-Thompson–like estimator with distance-based detection probabilities derived from stochastic geometry for estimation of population totals such as stem density and basal area in such situation. We show that our estimator is unbiased for Poisson forests and give estimates of variance and approximate confidence intervals for the estimator, unlike any previous methods. We compare the estimator to two previously published benchmark methods. The comparison is done through a simulation study where several plots are simulated either from field measured data or different marked point processes. The simulations show that the estimator produces lower or comparable error values than the other methods. In the sample plots based on the field measured data, the bias is relatively small—relative mean of errors for stem density, for example, varying from 0.3% to 2.2%, depending on the detection condition. The empirical coverage probabilities of the approximate confidence intervals are either similar to the nominal levels or conservative in these sample plots. Numéro de notice : A2021-987 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1111/biom.13312 Date de publication en ligne : 07/06/2020 En ligne : https://doi.org/10.1111/biom.13312 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103237
in Biometrics > vol 77 n° 2 (June 2021) . - pp 715 - 728[article]Volumes by tree species can be predicted using photogrammetric UAS data, Sentinel-2 images and prior field measurements / Mikko Kukkonen in Silva fennica, vol 55 n° 1 (January 2021)
[article]
Titre : Volumes by tree species can be predicted using photogrammetric UAS data, Sentinel-2 images and prior field measurements Type de document : Article/Communication Auteurs : Mikko Kukkonen, Auteur ; Eetu Kotivuori, Auteur ; Matti Maltamo, Auteur ; Lauri Korhonen, Auteur ; Petteri Packalen, Auteur Année de publication : 2021 Article en page(s) : n° 10360 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification barycentrique
[Termes IGN] données de terrain
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] image Sentinel-MSI
[Termes IGN] inventaire forestier local
[Termes IGN] modèle de simulation
[Termes IGN] régression
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Photogrammetric point clouds obtained with unmanned aircraft systems (UAS) have emerged as an alternative source of remotely sensed data for small area forest management inventories (FMI). Nonetheless, it is often overlooked that small area FMI require considerable field data in addition to UAS data, to support the modelling of forest attributes. In this study, we propose a method whereby tree volumes by species are predicted with photogrammetric UAS data and Sentinel-2 images, using models fitted with airborne laser scanning data. The study area is in a managed boreal forest area in Eastern Finland. First, we predicted total volume with UAS point cloud metrics using a prior regression model fitted in another area with ALS data. Tree species proportions were then predicted by k nearest neighbor (k-NN) imputation based on bi-seasonal Sentinel-2 images without measuring new field plot data. Species-specific volumes were then obtained by multiplying the total volume by species proportions. The relative root mean square error (RMSE) values for total and species-specific volume predictions at the validation plot level (30 m × 30 m) were 9.0%, and 33.4–62.6%, respectively. Our approach appears promising for species-specific small area FMI in Finland and in comparable forest conditions in which suitable field plots are available. Numéro de notice : A2021-738 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10360 En ligne : https://doi.org/10.14214/sf.10360 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98703
in Silva fennica > vol 55 n° 1 (January 2021) . - n° 10360[article]Evaluating the accuracy of ALS-based removal estimates against actual logging data / Ville Vähä-Konka in Annals of Forest Science, vol 77 n° 3 (September 2020)PermalinkTransferability and calibration of airborne laser scanning based mixed-effects models to estimate the attributes of sawlog-sized Scots pines / Lauri Korhonen in Silva fennica, vol 53 n° 3 (2019)PermalinkEstimating forest stand density and structure using Bayesian individual tree detection, stochastic geometry, and distribution matching / Kasper Kansanen in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)PermalinkPredicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning / Qing Xu in Forest ecology and management, vol 434 (28 February 2019)PermalinkA simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions / Syed Adnan in Forest ecology and management, vol 433 (15 February 2019)PermalinkIncorporating tree- and stand-level information on crown base height into multivariate forest management inventories based on airborne laser scanning / Matti Maltamo in Silva fennica, vol 52 n° 3 ([01/08/2018])PermalinkComparing nearest neighbor configurations in the prediction of species-specific diameter distributions / Janne Raty in Annals of Forest Science, vol 75 n° 1 (March 2018)PermalinkAirborne laser scanning for tree diameter distribution modelling: a comparison of different modelling alternatives in a tropical single-species plantation / Matti Maltamo in Forestry, an international journal of forest research, vol 91 n° 1 (January 2018)PermalinkImage matching as a data source for forest inventory – Comparison of semi-global matching and next-generation automatic terrain extraction algorithms in a typical managed boreal forest environment / Mari Kukkonen in International journal of applied Earth observation and geoinformation, vol 60 (August 2017)PermalinkAutomatic segment-level tree species recognition using high resolution aerial winter imagery / Anton Kuzmin in European journal of remote sensing, vol 49 n° 1 (2016)Permalink