Détail de l'auteur
Auteur Bo Du |
Documents disponibles écrits par cet auteur (7)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification / Yiting Tao in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
[article]
Titre : Unsupervised-restricted deconvolutional neural network for very high resolution remote-sensing image classification Type de document : Article/Communication Auteurs : Yiting Tao, Auteur ; Miaozhong Xu, Auteur ; Fan Zhang, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 6805 - 6823 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] classification pixellaire
[Termes IGN] déconvolution
[Termes IGN] image Geoeye
[Termes IGN] image Quickbird
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) As the acquisition of very high resolution (VHR) satellite images becomes easier owing to technological advancements, ever more stringent requirements are being imposed on automatic image interpretation. Moreover, per-pixel classification has become the focus of research interests in this regard. However, the efficient and effective processing and the interpretation of VHR satellite images remain a critical task. Convolutional neural networks (CNNs) have recently been applied to VHR satellite images with considerable success. However, the prevalent CNN models accept input data of fixed sizes and train the classifier using features extracted directly from the convolutional stages or the fully connected layers, which cannot yield pixel-to-pixel classifications. Moreover, training a CNN model requires large amounts of labeled reference data. These are challenging to obtain because per-pixel labeled VHR satellite images are not open access. In this paper, we propose a framework called the unsupervised-restricted deconvolutional neural network (URDNN). It can solve these problems by learning an end-to-end and pixel-to-pixel classification and handling a VHR classification using a fully convolutional network and a small number of labeled pixels. In URDNN, supervised learning is always under the restriction of unsupervised learning, which serves to constrain and aid supervised training in learning more generalized and abstract feature. To some degree, it will try to reduce the problems of overfitting and undertraining, which arise from the scarcity of labeled training data, and to gain better classification results using fewer training samples. It improves the generality of the classification model. We tested the proposed URDNN on images from the Geoeye and Quickbird sensors and obtained satisfactory results with the highest overall accuracy (OA) achieved as 0.977 and 0.989, respectively. Experiments showed that the combined effects of additional kernels and stages may have produced better results, and two-stage URDNN consistently produced a more stable result. We compared URDNN with four methods and found that with a small ratio of selected labeled data items, it yielded the highest and most stable results, whereas the accuracy values of the other methods quickly decreased. For some categories with fewer training pixels, accuracy for categories from other methods was considerably worse than that in URDNN, with the largest difference reaching almost 10%. Hence, the proposed URDNN can successfully handle the VHR image classification using a small number of labeled pixels. Furthermore, it is more effective than state-of-the-art methods. Numéro de notice : A2017-766 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2734697 En ligne : https://doi.org/10.1109/TGRS.2017.2734697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88803
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 6805 - 6823[article]A novel semisupervised active-learning algorithm for hyperspectral image classification / Zengmao Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
[article]
Titre : A novel semisupervised active-learning algorithm for hyperspectral image classification Type de document : Article/Communication Auteurs : Zengmao Wang, Auteur ; Bo Du, Auteur ; Lefei Zhang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 3071 - 3083 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] image hyperspectrale
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) Less training samples are a challenging problem in hyperspectral image classification. Active learning and semisupervised learning are two promising techniques to address the problem. Active learning solves the problem by improving the quality of the training samples, while semisupervised learning solves the problem by increasing the quantity of the training samples. However, they pay too much attention to the discriminative information in the unlabeled data, leading to information bias to train supervised models, and much more effort to label samples. Therefore, a method to discover representativeness and discriminativeness by semisupervised active learning is proposed. It takes advantages of both active learning and semisupervised learning. The representativeness and discriminativeness are discovered with a labeling process based on a supervised clustering technique and classification results. Specifically, the supervised clustering results can discover important structural information in the unlabeled data, and the classification results are also highly confidential in the active-learning process. With these clustering results and classification results, we can assign pseudolabels to the unlabeled data. Meanwhile, the unlabeled samples that cannot be assigned with pseudolabels with high confidence at each iteration are regarded as candidates in active learning. The methodology is validated on four hyperspectral data sets. Significant improvements in classification accuracy are achieved by the proposed method with respect to the state-of-the-art methods. Numéro de notice : A2017-473 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2650938 En ligne : https://doi.org/10.1109/TGRS.2017.2650938 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86398
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 6 (June 2017) . - pp 3071 - 3083[article]Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning / Yanni Dong in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
[article]
Titre : Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning Type de document : Article/Communication Auteurs : Yanni Dong, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur ; Lefei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 2509 - 2524 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification
[Termes IGN] image hyperspectrale
[Termes IGN] réductionRésumé : (Auteur) The high-dimensional data space of hyperspectral images (HSIs) often result in ill-conditioned formulations, which finally leads to many of the high-dimensional feature spaces being empty and the useful data existing primarily in a subspace. To avoid these problems, we use distance metric learning for dimensionality reduction. The goal of distance metric learning is to incorporate abundant discriminative information by reducing the dimensionality of the data. Considering that global metric learning is not appropriate for all training samples, this paper proposes an ensemble discriminative local metric learning (EDLML) algorithm for HSI analysis. The EDLML algorithm learns robust local metrics from both the training samples and the relative neighborhood of them and considers the different local discriminative distance metrics by dealing with the data region by region. It aims to learn a subspace to keep all the samples in the same class are as near as possible, while those from different classes are separated. The learned local metrics are then used to build an ensemble metric. Experiments on a number of different hyperspectral data sets confirm the effectiveness of the proposed EDLML algorithm compared with that of the other dimension reduction methods. Numéro de notice : A2017-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2645703 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2645703 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86388
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2509 - 2524[article]Joint sparse representation and multitask learning for hyperspectral target detection / Yuxiang Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)
[article]
Titre : Joint sparse representation and multitask learning for hyperspectral target detection Type de document : Article/Communication Auteurs : Yuxiang Zhang, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur ; Tongliang Liu, Auteur Année de publication : 2017 Article en page(s) : pp 894 - 906 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] détection de cible
[Termes IGN] image hyperspectrale
[Termes IGN] représentation parcimonieuseRésumé : (Auteur) With the high spectral resolution, hyperspectral images (HSIs) provide great potential for target detection, which is playing an increasingly important role in HSI processing. Many target detection methods uniformly utilize all the spectral information or employ reduced spectral information to distinguish the targets and background. Simultaneously reducing spectral redundancy and preserving the discriminative information is a challenging problem in hyperspectral target detection. The multitask learning (MTL) technique may have the potential to solve the above problem, since it can explore the redundancy knowledge to construct multiple sub-HSIs and integrate them without any information loss. This paper proposes the joint sparse representation and MTL (JSR-MTL) method for hyperspectral target detection. This approach: 1) explores the HSIs similarity by a band cross-grouping strategy to construct multiple sub-HSIs; 2) takes full advantage of the MTL technique to integrate the sparse representation models for the multiple related sub-HSIs; and 3) applies the total reconstruction error difference accumulated over all the tasks to detect the targets. Extensive experiments were carried out on three HSIs, and it was founded that JSR-MTL generally shows a better detection performance than the other target detection methods. Numéro de notice : A2017-144 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2616649 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2616649 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84632
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 2 (February 2017) . - pp 894 - 906[article]A robust background regression based score estimation algorithm for hyperspectral anomaly detection / Zhao Rui in ISPRS Journal of photogrammetry and remote sensing, vol 122 (December 2016)
[article]
Titre : A robust background regression based score estimation algorithm for hyperspectral anomaly detection Type de document : Article/Communication Auteurs : Zhao Rui, Auteur ; Bo Du, Auteur ; Liangpei Zhang, Auteur ; Lefei Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 126 – 144 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection d'anomalie
[Termes IGN] image hyperspectrale
[Termes IGN] régressionRésumé : (Auteur) Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement in practice. Numéro de notice : A2016--023 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.10.006 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.10.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83886
in ISPRS Journal of photogrammetry and remote sensing > vol 122 (December 2016) . - pp 126 – 144[article]A discriminative metric learning based anomaly detection method / Bo Du in IEEE Transactions on geoscience and remote sensing, vol 52 n° 11 tome 1 (November 2014)PermalinkSlow feature analysis for change detection in multispectral imagery / Chen Wu in IEEE Transactions on geoscience and remote sensing, vol 52 n° 5 tome 1 (May 2014)Permalink