Détail de l'auteur
Auteur Chein-I Chang |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Band subset selection for anomaly detection in hyperspectral imagery / Lin Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)
[article]
Titre : Band subset selection for anomaly detection in hyperspectral imagery Type de document : Article/Communication Auteurs : Lin Wang, Auteur ; Chein-I Chang, Auteur ; Li-Chien Lee, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4887 - 4898 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection d'anomalie
[Termes IGN] détection de cible
[Termes IGN] image hyperspectrale
[Termes IGN] jeu de donnéesRésumé : (Auteur) This paper presents a new approach, called band subset selection (BSS)-based hyperspectral anomaly detection (AD), which selects multiple bands simultaneously as a band subset rather than selecting multiple bands one at a time as the tradition band selection (BS) does, referred to as sequential multiple BS (SQMBS). Its idea is to first use virtual dimensionality (VD) to determine the number of multiple bands, nBS needed to be selected as a band subset and then develop two iterative process, sequential BSS (SQ-BSS) algorithm and successive BSS (SC-BSS) algorithm to find an optimal band subset numerically among all possible nBS combinations out of the full band set. In order to terminate the search process the averaged least-squares error (ALSE) and 3-D receiver operating characteristic (3D ROC) curves are used as stopping criteria to evaluate performance relative to AD using the full band set. Experimental results demonstrate that BSS generally performs better background suppression while maintaining target detection capability compared to target detection using full band information. Numéro de notice : A2017-658 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2681278 En ligne : https://doi.org/10.1109/TGRS.2017.2681278 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87069
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 9 (September 2017) . - pp 4887 - 4898[article]Adaptive linear spectral mixture analysis / Chein-I Chang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Adaptive linear spectral mixture analysis Type de document : Article/Communication Auteurs : Chein-I Chang, Auteur Année de publication : 2017 Article en page(s) : pp 1240 - 1253 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] image optique
[Termes IGN] signature spectraleRésumé : (Auteur) This paper presents a theory of adaptive linear spectral mixture analysis (ALSMA), which can implement LSMA using an adaptive linear mixing model (ALMM) that adjusts and varies with spectral signatures adaptively. In doing so, a recursive LSMA (RLSMA) is developed for ALSMA to allow LSMA to update spectral signature by spectral signature without reprocessing LSMA and also to fuse LSMA results obtained by ALMM using different sets of spectral signatures. To form ALMM, the concept of RLSMA-specified virtual dimensionality is further proposed for ALSMA, which not only can find spectral signatures recursively by RLSMA to adjust ALMM but also can automatically determine the number of spectral signatures via Neyman-Pearson detection theory. Numéro de notice : A2017-151 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2620494 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2620494 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84683
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1240 - 1253[article]Recursive orthogonal projection-based simplex growing algorithm / Hsiao-Chi Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)
[article]
Titre : Recursive orthogonal projection-based simplex growing algorithm Type de document : Article/Communication Auteurs : Hsiao-Chi Li, Auteur ; Chein-I Chang, Auteur Année de publication : 2016 Article en page(s) : pp 3780 - 3793 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme du simplexe
[Termes IGN] filtre de Kalman
[Termes IGN] géophysique
[Termes IGN] image hyperspectrale
[Termes IGN] projection orthogonaleRésumé : (Auteur) The simplex growing algorithm (SGA) has been widely used for finding endmembers. It can be considered as a sequential version of the well-known endmember finding algorithm, N-finder algorithm (N-FINDR), which finds endmembers one at a time by growing simplexes. However, one of the major hurdles for N-FINDR and SGA is the calculation of simplex volume (SV) which poses a great challenge in designing any algorithm using SV as a criterion for finding endmembers. This paper develops an orthogonal projection (OP)-based SGA (OP-SGA) which essentially resolves this computational issue. It converts the issue of calculating SV to calculating the OP on previously found simplexes without computing matrix determinants. Most importantly, a recursive Kalman filter-like OP-SGA, to be called recursive OP-SGA (ROP-SGA), can be also derived to ease computation. By virtue of ROP-SGA, several advantages and benefits in computational savings and hardware implementation can be gained for which N-FINDR and SGA do not have. Numéro de notice : A2016-871 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2527737 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2527737 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83028
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 7 (July 2016) . - pp 3780 - 3793[article]Progressive band processing of constrained energy minimization for subpixel detection / Chein-I Chang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
[article]
Titre : Progressive band processing of constrained energy minimization for subpixel detection Type de document : Article/Communication Auteurs : Chein-I Chang, Auteur ; Robert C. Schultz, Auteur ; Marissa C. Hobbs, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1626 - 1637 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse infrapixellaire
[Termes IGN] bande spectrale
[Termes IGN] détection de cible
[Termes IGN] matrice
[Termes IGN] méthode de réduction d'énergie
[Termes IGN] optimisation (mathématiques)Résumé : (Auteur) Constrained energy minimization (CEM) has been widely used for subpixel detection. It takes advantage of inverting the global sample correlation matrix R to suppress background so as to enhance detection of targets of interest. This paper presents a progressive band processing of CEM (PBP-CEM) which can perform CEM for target detection progressively band by band according to band sequential format. In doing so, a new concept, called causal band correlation matrix (CBCM), is introduced to replace the global sample correlation matrix R. It is a global correlation matrix formed by only those bands that were already visited up to the band currently being processed while excluding bands yet to be visited in the future. The proposed PBP-CEM allows CEM to be processed whenever bands are available, without waiting for completing band collection. With such an advantage, CEM has potential in data transmission and communication, specifically in satellite data processing. Numéro de notice : A2015-135 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2346479 Date de publication en ligne : 09/09/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2346479 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75801
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 3 (March 2015) . - pp 1626 - 1637[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015031 RAB Revue Centre de documentation En réserve L003 Disponible Progressive band selection of spectral unmixing for hyperspectral imagery / Chein-I Chang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 4 (April 2014)
[article]
Titre : Progressive band selection of spectral unmixing for hyperspectral imagery Type de document : Article/Communication Auteurs : Chein-I Chang, Auteur ; Keng-Hao Liu, Auteur Année de publication : 2014 Article en page(s) : pp 2002 - 2017 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectraleRésumé : (Auteur) A new band selection (BS), called progressive BS (PBS) of spectral unmixing for hyperspectral imagery is being presented. It is quite different from the traditional BS in the sense that the former adapts the number of selected bands, p to various endmembers used for spectral unmixing, while the latter fixes the value of p at a constant for all endmembers. Due to the fact that different endmembers post various levels of difficulty in discrimination, each endmember should have its own custom-selected bands to specify its spectral characteristics. In order to address this issue, p is composed of two values, one value determined by virtual dimensionality to accommodate each of endmembers and the other is determined by a new concept of band dimensionality allocation to account for discrminability among endmembers. In order to find appropriate bands to be used for PBS, band prioritization and band de-correlation are included to rank bands according to significance of band information and to remove interband redundancy, respectively. As a result, spectral unmixing can be performed progressively by selecting different bands for various endmembers, a task that the traditional BS cannot accomplish. The effectiveness and advantages of using PBS over BS are also demonstrated by experiments. Numéro de notice : A2014-268 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2257604 En ligne : https://doi.org/10.1109/TGRS.2013.2257604 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33171
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 4 (April 2014) . - pp 2002 - 2017[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014041 RAB Revue Centre de documentation En réserve L003 Disponible