Détail de l'auteur
Auteur Keng-Hao Liu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Linear spectral mixture analysis via multiple-kernel learning for hyperspectral image classification / Keng-Hao Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 4 (April 2015)
[article]
Titre : Linear spectral mixture analysis via multiple-kernel learning for hyperspectral image classification Type de document : Article/Communication Auteurs : Keng-Hao Liu, Auteur ; Yen-Yu Lin, Auteur ; Chu-Song Chen, Auteur Année de publication : 2015 Article en page(s) : pp 2254 - 2269 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] apprentissage automatique
[Termes IGN] classification automatique
[Termes IGN] image hyperspectraleRésumé : (Auteur) Linear spectral mixture analysis (LSMA) has received wide interests for spectral unmixing in the remote sensing community. This paper introduces a framework called multiplekernel learning-based spectral mixture analysis (MKL-SMA) that integrates a newly proposed MKL method into the training process of LSMA. MKL-SMA allows us to adopt a set of nonlinear basis kernels to better characterize the data so that it can enrich the discriminant capability in classification. Because a single kernel is often insufficient to well present all the data characteristics, MKL-SMA has the advantage of providing a broader range of representation flexibilities; it also eases the kernel selection process because the kernel combination parameters can be learned automatically. Unlike most MKL approaches where complex nonlinear optimization problems are involved in their training process, we derived a closed-form solution of the kernel combination parameters in MKL-SMA. Our method is thus efficient for training and easy to implement. The usefulness of MKL-SMA is demonstrated by conducting real hyperspectral image experiments for performance evaluation. Promising results manifest the effectiveness of the proposed MKL-SMA. Numéro de notice : A2015-173 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2358620 Date de publication en ligne : 29/09/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2358620 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75891
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 4 (April 2015) . - pp 2254 - 2269[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015041 RAB Revue Centre de documentation En réserve L003 Disponible Progressive band selection of spectral unmixing for hyperspectral imagery / Chein-I Chang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 4 (April 2014)
[article]
Titre : Progressive band selection of spectral unmixing for hyperspectral imagery Type de document : Article/Communication Auteurs : Chein-I Chang, Auteur ; Keng-Hao Liu, Auteur Année de publication : 2014 Article en page(s) : pp 2002 - 2017 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectraleRésumé : (Auteur) A new band selection (BS), called progressive BS (PBS) of spectral unmixing for hyperspectral imagery is being presented. It is quite different from the traditional BS in the sense that the former adapts the number of selected bands, p to various endmembers used for spectral unmixing, while the latter fixes the value of p at a constant for all endmembers. Due to the fact that different endmembers post various levels of difficulty in discrimination, each endmember should have its own custom-selected bands to specify its spectral characteristics. In order to address this issue, p is composed of two values, one value determined by virtual dimensionality to accommodate each of endmembers and the other is determined by a new concept of band dimensionality allocation to account for discrminability among endmembers. In order to find appropriate bands to be used for PBS, band prioritization and band de-correlation are included to rank bands according to significance of band information and to remove interband redundancy, respectively. As a result, spectral unmixing can be performed progressively by selecting different bands for various endmembers, a task that the traditional BS cannot accomplish. The effectiveness and advantages of using PBS over BS are also demonstrated by experiments. Numéro de notice : A2014-268 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2257604 En ligne : https://doi.org/10.1109/TGRS.2013.2257604 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33171
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 4 (April 2014) . - pp 2002 - 2017[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014041 RAB Revue Centre de documentation En réserve L003 Disponible