Détail de l'auteur
Auteur Saurabh Prasad |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Morphologically decoupled structured sparsity for rotation-invariant hyperspectral image analysis / Saurabh Prasad in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Morphologically decoupled structured sparsity for rotation-invariant hyperspectral image analysis Type de document : Article/Communication Auteurs : Saurabh Prasad, Auteur ; Demetrio Labate, Auteur ; Mishan Cui, Auteur ; Yuhang Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 4355 - 4366 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classificateur paramétrique
[Termes IGN] classification spectrale
[Termes IGN] décomposition d'image
[Termes IGN] image hyperspectrale
[Termes IGN] morphologie mathématique
[Termes IGN] primitive géométrique
[Termes IGN] réflectance spectraleRésumé : (Auteur) Hyperspectral imagery has emerged as a popular sensing modality for a variety of applications, and sparsity-based methods were shown to be very effective to deal with challenges coming from high dimensionality in most hyperspectral classification problems. In this paper, we challenge the conventional approach to hyperspectral classification that typically builds sparsity-based classifiers directly on spectral reflectance features or features derived directly from the data. We assert that hyperspectral image (HSI) processing can benefit very significantly by decoupling data into geometrically distinct components since the resulting decoupled components are much more suitable for sparse representation-based classifiers. Specifically, we apply morphological separation to decouple data into texture and cartoon-like components, which are sparsely represented using local discrete cosine bases and multiscale shearlets, respectively. In addition to providing a structured sparse representation, this approach allows us to build classifiers with invariance properties specific to each geometrically distinct component of the data. The experimental results using real-world HSI data sets demonstrate the efficacy of the proposed framework for classifying multichannel imagery under a variety of adverse conditions - in particular, small training sample size, additive noise, and rotational variabilities between training and test samples. Numéro de notice : A2017-496 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691607 En ligne : http://dx.doi.org./10.1109/TGRS.2017.2691607 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86437
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4355 - 4366[article]Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification / Hao Wu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Dirichlet process based active learning and discovery of unknown classes for hyperspectral image classification Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Saurabh Prasad, Auteur Année de publication : 2016 Article en page(s) : pp 4882 - 4895 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] image hyperspectrale
[Termes IGN] problème de DirichletRésumé : (Auteur) Active learning is an area of significant ongoing research interest for the classification of remotely sensed data, where obtaining efficient training data is both time consuming and expensive. The goal of active learning is to achieve high classification performance by querying as few samples as possible from a large unlabeled data pool. Traditional active learning frameworks all assume the existence of labeled samples for all classes of interest. However, in real-world applications, the unlabeled data pool may contain data from unknown classes that we are not aware of in advance, and a quick detection of them is useful for enriching our training set. In this scenario, traditional active learning methods may not effectively and rapidly detect the unknown classes. We proposed an active learning framework which provides robust classification performance with minimum manual labeling effort while simultaneously discovering unknown (missing) classes. The discovery of unknown classes is particularly suited to an active learning framework where an annotator is in the loop. A Dirichlet process mixture model is utilized in our proposed method to cluster the labeled and unlabeled samples as a whole. If unknown classes exist, they will emerge as new clusters which are different from other existing clusters occupied by known classes, and then, the proposed query strategy will give priority to querying samples in the new clusters. We present experimental results with hyperspectral data to show that our method provides better classification performance compared to existing active learning methods with or without unknown classes. Numéro de notice : A2016-892 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2552507 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2552507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83072
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4882 - 4895[article]Decision fusion in kernel-induced spaces for hyperspectral image classification / Wei Li in IEEE Transactions on geoscience and remote sensing, vol 52 n° 6 Tome 2 (June 2014)
[article]
Titre : Decision fusion in kernel-induced spaces for hyperspectral image classification Type de document : Article/Communication Auteurs : Wei Li, Auteur ; Saurabh Prasad, Auteur ; James E. Fowler, Auteur Année de publication : 2014 Article en page(s) : pp 3399 - 3411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectraleRésumé : (Auteur) The one-against-one (OAO) strategy is commonly employed with classifiers-such as support vector machines-which inherently provide binary two-class classification in order to handle multiple classes. This OAO strategy is introduced for the classification of hyperspectral imagery using discriminant analysis within kernel-induced feature spaces, producing a pair of algorithms-kernel discriminant analysis and kernel local Fisher discriminant analysis-for dimensionality reduction, which are followed by a quadratic Gaussian maximum-likelihood-estimation classifier. In the proposed approach, a multiclass problem is broken down into all possible binary classifiers, and various decision-fusion rules are considered for merging results from this classifier ensemble. Experimental results using several hyperspectral data sets demonstrate the benefits of the proposed approach-in addition to improved classification performance, the resulting classifier framework requires reduced memory for estimating kernel matrices. Numéro de notice : A2014-309 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2272760 En ligne : https://doi.org/10.1109/TGRS.2013.2272760 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33212
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 6 Tome 2 (June 2014) . - pp 3399 - 3411[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014061B RAB Revue Centre de documentation En réserve L003 Disponible