Détail de l'auteur
Auteur Shuyuan Yang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Pan-sharpening via deep metric learning / Yinghui Xing in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : Pan-sharpening via deep metric learning Type de document : Article/Communication Auteurs : Yinghui Xing, Auteur ; Min Wang, Auteur ; Shuyuan Yang, Auteur ; Licheng Jiao, Auteur Année de publication : 2018 Article en page(s) : pp 165 - 183 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Neighbors Embedding based pansharpening methods have received increasing interests in recent years. However, image patches do not strictly follow the similar structure in the shallow MultiSpectral (MS) and PANchromatic (PAN) image spaces, consequently leading to a bias to the pansharpening. In this paper, a new deep metric learning method is proposed to learn a refined geometric multi-manifold neighbor embedding, by exploring the hierarchical features of patches via multiple nonlinear deep neural networks. First of all, down-sampled PAN images from different satellites are divided into a large number of training image patches and are then grouped coarsely according to their shallow geometric structures. Afterwards, several Stacked Sparse AutoEncoders (SSAE) with similar structures are separately constructed and trained by these grouped patches. In the fusion, image patches of the source PAN image pass through the networks to extract features for formulating a deep distance metric and thus deriving their geometric labels. Then, patches with the same geometric labels are grouped to form geometric manifolds. Finally, the assumption that MS patches and PAN patches form the same geometric manifolds in two distinct spaces, is cast on geometric groups to formulate geometric multi-manifold embedding for estimating high resolution MS image patches. Some experiments are taken on datasets acquired by different satellites. The experimental results demonstrate that our proposed method can obtain better fusion results than its counterparts in terms of visual results and quantitative evaluations. Numéro de notice : A2018-493 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.016 Date de publication en ligne : 17/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91236
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 165 - 183[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Semisupervised dual-geometric subspace projection for dimensionality reduction of hyperspectral image data / Shuyuan Yang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 6 Tome 2 (June 2014)
[article]
Titre : Semisupervised dual-geometric subspace projection for dimensionality reduction of hyperspectral image data Type de document : Article/Communication Auteurs : Shuyuan Yang, Auteur ; Penglei Jin, Auteur ; Bin Li, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 3587 - 3593 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification semi-dirigée
[Termes IGN] image hyperspectrale
[Termes IGN] matrice
[Termes IGN] réduction géométriqueRésumé : (Auteur) Exploring the geometric prior in the dimensionality reduction (DR) of hyperspectral image data (HID) is an important issue because it can overcome the possible overclassification of spectrally homogeneous areas in the HID classification. In this paper, the local geometric similarity of hyperspectral vectors is explored in both the manifold domain and image domain, and a semisupervised dual-geometric subspace projection (DGSP) approach is proposed for the DR of HID, by utilizing both labeled and unlabeled samples. First, the geometric information in the manifold domain is captured by a sparse coding-based geometric graph, and then, a local-consistency-constrained geometric matrix is defined to reveal the geometric structure in the image domain. Second, unlabeled samples are used to refine the geometric structure by defining a pairwise similarity matrix. Third, three scatter matrices are then derived from these similarity matrices to find the optimal subspace projection that captures the most important properties of the subspaces with respect to classification. Some experiments are taken on the airborne visible infrared imaging spectrometer (AVIRIS) HID to prove the efficiency of the proposed method. Numéro de notice : A2014-312 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2273798 En ligne : https://doi.org/10.1109/TGRS.2013.2273798 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33215
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 6 Tome 2 (June 2014) . - pp 3587 - 3593[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014061B RAB Revue Centre de documentation En réserve L003 Disponible