Détail de l'auteur
Auteur Shutao Li |
Documents disponibles écrits par cet auteur (13)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification / Yu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
[article]
Titre : Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification Type de document : Article/Communication Auteurs : Yu Li, Auteur ; Ting Lu, Auteur ; Shutao Li, Auteur Année de publication : 2020 Article en page(s) : pp 4976 - 4988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] classification pixellaire
[Termes IGN] échantillonnage
[Termes IGN] image hyperspectrale
[Termes IGN] image multiple
[Termes IGN] segmentation sémantique
[Termes IGN] superpixelRésumé : (auteur) Active learning (AL) attempts to actively select the most representative or useful training samples in an iterative manner. The aim is to simultaneously improve the classification performance and reduce the manual labeling effort. In this article, a novel subpixel-pixel-superpixel-based multiview AL (MAL) (SPS-MAL) method is proposed for hyperspectral image (HSI) classification. Here, the multiple views are generated via extracting the subpixel-level, pixel-level, and superpixel-level information. The multiple views can reflect various characteristics of HSI, i.e., spectral mixture, spectral discrimination, and spectral–spatial structure. Therefore, the joint use of diverse and complementary information in multiple views will contribute to a better identification ability of different classes. In addition, a coarse-to-fine MAL algorithm is introduced to effectively select the most representative samples with the most uncertainty. Specifically, a disagreement analysis on multiple views and joint posterior probability estimation is used to query unlabeled samples. Along with the expansion of training samples, view-specific confidence scores are estimated to adaptively integrate the classification results of multiple views, according to their discrimination performance. In this way, the classification accuracy will be further boosted while the number of necessary training samples can be significantly reduced. The experimental classification results on three well-known HSIs demonstrate the effectiveness of the proposed SPS-MAL method. Numéro de notice : A2020-392 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2971081 Date de publication en ligne : 14/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2971081 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95388
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4976 - 4988[article]Multichannel Pulse-Coupled Neural Network-Based Hyperspectral Image Visualization / Puhong Duan in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
[article]
Titre : Multichannel Pulse-Coupled Neural Network-Based Hyperspectral Image Visualization Type de document : Article/Communication Auteurs : Puhong Duan, Auteur ; Xudong Kang, Auteur ; Shutao Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2444 - 2456 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image numérique
[Termes IGN] analyse multibande
[Termes IGN] chromatopsie
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cohérence des couleurs
[Termes IGN] image en couleur composée
[Termes IGN] image hyperspectrale
[Termes IGN] image RVB
[Termes IGN] synthèse trichromatique
[Termes IGN] visualisation de donnéesRésumé : (auteur) Hyperspectral Image (HSI) visualization, which aims at displaying as much material information of original images as possible on a trichromatic monitor with natural color, plays an important role in image interpretation and analysis. However, most of the HSI visualization methods only focus on presenting the detail information of a scene without providing natural colors and distinguishing land covers with similar colors. In order to address this problem, this article proposes a multichannel pulse-coupled neural network (MPCNN)-based HSI visualization method, which consists of the following steps. First, the MPCNN is proposed and explored to fuse the original HSI so as to obtain a fused band with rich spatial details. Then, a color mapping scheme is proposed to determine the weights of red, green, and blue (RGB) channels. Finally, the weighted RGB channels are stacked together for visualization. Experiments performed on four hyperspectral data sets demonstrate that the proposed method not only displays the HSI with nature colors but also improves the details in the image. The effectiveness of the proposed method is demonstrated in terms of both visual effect and objective indexes. Numéro de notice : A2020-197 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2949427 Date de publication en ligne : 20/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2949427 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94867
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2444 - 2456[article]Hyperspectral image classification with squeeze multibias network / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
[article]
Titre : Hyperspectral image classification with squeeze multibias network Type de document : Article/Communication Auteurs : Leyuan Fang, Auteur ; Guangyun Liu, Auteur ; Shutao Li, Auteur ; Pedram Ghamisi, Auteur ; Jon Atli Benediktsson, Auteur Année de publication : 2019 Article en page(s) : pp 1291 - 1301 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] erreur systématique
[Termes IGN] image hyperspectraleRésumé : (Auteur) A convolutional neural network (CNN) has recently demonstrated its outstanding capability for the classification of hyperspectral images (HSIs). Typical CNN-based methods usually adopt image patches as inputs to the network. However, a fixed-size image patch in HSI with complex spatial contexts may contain multiple ground objects of different classes, which will deteriorate the classification performance of the CNN. In addition, traditional convolutional layers adopted in the CNN have a huge amount of parameters needed to be tuned, which will cause high computational cost. To address the above-mentioned issues, a novel squeeze multibias network (SMBN) is proposed for HSI classification. Specifically, the proposed SMBN first introduces the multibias module (MBM), which incorporates multibias into the rectified linear unit layers. The MBM can decouple the feature maps of input patches into multiple response maps (corresponding to different ground objects) and adaptively select the meaningful maps for classification. Furthermore, the proposed SMBN replaces the traditional convolutional layer with a squeeze convolution module, which can greatly reduce the number of parameters in the network, thus saving the running time, while still maintaining high classification accuracy. Experimental results on three real HSIs demonstrate the superiority of the proposed SMBN method over several state-of-the-art classification approaches. Numéro de notice : A2019-113 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2865953 Date de publication en ligne : 13/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2865953 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92453
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1291 - 1301[article]Remote sensing scene classification using multilayer stacked covariance pooling / Nanjun He in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Remote sensing scene classification using multilayer stacked covariance pooling Type de document : Article/Communication Auteurs : Nanjun He, Auteur ; Leyuan Fang, Auteur ; Shutao Li, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 6899 - 6910 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de covariance
[Termes IGN] représentation cartographique
[Termes IGN] scèneRésumé : (auteur) This paper proposes a new method, called multilayer stacked covariance pooling (MSCP), for remote sensing scene classification. The innovative contribution of the proposed method is that it is able to naturally combine multilayer feature maps, obtained by pretrained convolutional neural network (CNN) models. Specifically, the proposed MSCP-based classification framework consists of the following three steps. First, a pretrained CNN model is used to extract multilayer feature maps. Then, the feature maps are stacked together, and a covariance matrix is calculated for the stacked features. Each entry of the resulting covariance matrix stands for the covariance of two different feature maps, which provides a natural and innovative way to exploit the complementary information provided by feature maps coming from different layers. Finally, the extracted covariance matrices are used as features for classification by a support vector machine. The experimental results, conducted on three challenging data sets, demonstrate that the proposed MSCP method can not only consistently outperform the corresponding single-layer model but also achieve better classification performance than other pretrained CNN-based scene classification methods. Numéro de notice : A2018-552 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2845668 Date de publication en ligne : 09/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2845668 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91640
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 6899 - 6910[article]From subpixel to superpixel : a novel fusion framework for hyperspectral image classification / Ting Lu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : From subpixel to superpixel : a novel fusion framework for hyperspectral image classification Type de document : Article/Communication Auteurs : Ting Lu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4398 - 4411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] combinaison linéaire
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Supervised classification of hyperspectral images (HSI) is a very challenging task due to the existence of noisy and mixed spectral characteristics. Recently, the widely developed spectral unmixing techniques offer the possibility to extract spectral mixture information at a subpixel level, which can contribute to the categorization of seriously mixed spectral pixels. Besides, it has been demonstrated that the discrimination between different materials will be improved by integrating the geometry and structure information, which can be derived from the variance between neighboring pixels. Furthermore, by incorporating the spatial context, the superpixel-based spectral-spatial similarity information can be used to smooth classification results in homogeneous regions. Therefore, a novel fusion framework for HSI classification that combines subpixel, pixel, and superpixel-based complementary information is proposed in this paper. Here, both feature fusion and decision fusion schemes are introduced. For the feature fusion scheme, the first step is to extract subpixel-level, pixel-level, and superpixel-level features from HSI, respectively. Then, the multiple feature-induced kernels are fused to form one composite kernel, which is incorporated with a support vector machine (SVM) classifier for label assignment. For the decision fusion scheme, class probabilities based on three different features are estimated by the probabilistic SVM classifier first. Then, the class probabilities are adaptively fused to form a probabilistic decision rule for classification. Experimental results tested on different real HSI images can demonstrate the effectiveness of the proposed fusion schemes in improving discrimination capability, when compared with the classification results relied on each individual feature. Numéro de notice : A2017-654 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691906 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691906 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86439
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4398 - 4411[article]Learning to diversify deep belief networks for hyperspectral image classification / Ping Zhong in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)PermalinkAdaptive spectral–spatial compression of hyperspectral image with sparse representation / Wei Fu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)PermalinkRandom-walker-based collaborative learning for hyperspectral image classification / Bin Sun in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)PermalinkSpectral–spatial adaptive sparse representation for hyperspectral image denoising / Ting Lu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)PermalinkClassification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)PermalinkExtended random walker-based classification of hyperspectral images / Xudong Kang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)PermalinkSpectral–spatial hyperspectral image classification via multiscale adaptive sparse representation / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 12 (December 2014)PermalinkFeature extraction of hyperspectral images with image fusion and recursive filtering / Xudong Kang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 6 Tome 2 (June 2014)Permalink