Descripteur
Documents disponibles dans cette catégorie (848)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Detailed cultural heritage recording produced with traditional methods and laser scanning / Ljubo Lah in Geodetski vestnik, vol 67 n° 4 (December 2023)
[article]
Titre : Detailed cultural heritage recording produced with traditional methods and laser scanning Type de document : Article/Communication Auteurs : Ljubo Lah, Auteur ; Alain Guerreau, Auteur ; Mojca K. Fras, Auteur ; Tilen Urbančič, Auteur Année de publication : 2023 Article en page(s) : pp 442 - 458 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de données
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] église
[Termes IGN] matrice orthogonale
[Termes IGN] patrimoine culturel
[Termes IGN] topométrie de précisionRésumé : (auteur) Traditional measurement methods are still widely used for recording cultural heritage objects. On the other hand, geodetic surveying and modern technologies such as 3D laser scanning can provide more accurate, geometrically consistent and extremely detailed data that can be used as a basis for detailed vector maps or 3D models. The main aim of our research was to investigate the complementary approach, using both traditional and modern methods, in order to produce detailed vector maps of the Romanesque church of St. Martin in Chapaize, France, which are essential for further unveiling its historic development. Geometrically, this church is rather extensive and has many irregularities in its shape. Our approach to the documentation process is presented and evaluated in this paper. We applied the Procrustes analysis for the ground floor map, which gave us an objective accuracy assessment. Point clouds of the bell tower acquired by two different laser instruments have also been compared. Numéro de notice : A2023-240 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.15292/geodetski-vestnik.2023.04.442-458 Date de publication en ligne : 01/12/2023 En ligne : https://dx.doi.org/10.15292/geodetski-vestnik.2023.04.442-458 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103603
in Geodetski vestnik > vol 67 n° 4 (December 2023) . - pp 442 - 458[article]Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models / Asli Ozdarici-Ok in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
[article]
Titre : Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models Type de document : Article/Communication Auteurs : Asli Ozdarici-Ok, Auteur ; Ali Ozgun Ok, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] Pinus pinea
[Termes IGN] semis de points
[Termes IGN] TurquieRésumé : (auteur) Stone Pine (Pinus pinea L.) is currently the pine species with the highest commercial value with edible seeds. In this respect, this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models (DSMs) generated through an Unmanned Aerial Vehicle (UAV) mission. We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information. Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya, Turkey. A Hand-held Mobile Laser Scanner (HMLS) was utilized to collect the reference point cloud dataset. Our findings confirm that the proposed methodology, which uses a single DSM as an input, secures overall pixel-based and object-based F1-scores of 88.3% and 97.7%, respectively. The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm (less than 4 pixels), demonstrating the effectiveness and robustness of the proposed methodology. Finally, the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context. Numéro de notice : A2022-620 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2090864 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2090864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101364
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]La cartographie du relief : Une gageure technique et des solutions / Laurent Polidori in Géomètre, n° 2212 (avril 2023)
[article]
Titre : La cartographie du relief : Une gageure technique et des solutions Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2023 Article en page(s) : pp 38 - 48 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] canopée
[Termes IGN] crue
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inondation
[Termes IGN] modèle numérique de terrain
[Termes IGN] nuage
[Termes IGN] photogrammétrie aérienne
[Termes IGN] photogrammétrie terrestre
[Termes IGN] précision des données
[Termes IGN] qualité du modèle
[Termes IGN] représentation du relief
[Termes IGN] semis de points
[Termes IGN] télémétrie laserRésumé : (Editeur) La reconstruction d’éléments tridimensionnels a fait l’objet de nombreux développements, avec des applications dans des domaines aussi variés que l’architecture, la géologie et l’anatomie, mais c’est au relief terrestre que l’on s’inté?resse dans ce dossier. Ainsi, une grande variété de techniques de mesure (photogrammétrie, radar, lidar), mises en œuvre depuis des satellites, des avions, des drones ou à même le sol, adaptées aux différentes échelles et aux différents paysages, permettent de cartographier le relief terrestre sous la forme de nuages de points. Ceux-ci servent à construire des modèles numériques de terrain (sol) ou de surface (canopée forestière, toits), utilisés dans de nombreux domaines, pourvus qu’ils respectent des exigences de qualité comme la précision des altitudes ou la cohérence de l’hydrographie. L’évolution des instruments d’observation et des algorithmes de traitement étend les possibilités de production de modèles de relief et leur usage pour la gestion des territoires. Dans ce contexte, la formation technique constitue le nouvel enjeu pour améliorer le dialogue entre les producteurs et les consommateurs. Numéro de notice : A2023-174 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/04/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102977
in Géomètre > n° 2212 (avril 2023) . - pp 38 - 48[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2023041 RAB Revue Centre de documentation En réserve L003 Disponible Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
[article]
Titre : Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning Type de document : Article/Communication Auteurs : Iris de Gelis, Auteur ; Sébastien Lefèvre, Auteur ; Thomas Corpetti, Auteur Année de publication : 2023 Article en page(s) : pp 274 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique de surface
[Termes IGN] réseau neuronal siamois
[Termes IGN] semis de points
[Termes IGN] végétation
[Termes IGN] zone urbaineRésumé : (auteur) This study is concerned with urban change detection and categorization in point clouds. In such situations, objects are mainly characterized by their vertical axis, and the use of native 3D data such as 3D Point Clouds (PCs) is, in general, preferred to rasterized versions because of significant loss of information implied by any rasterization process. Yet, for obvious practical reasons, most existing studies only focus on 2D images for change detection purpose. In this paper, we propose a method capable of performing change detection directly within 3D data. Despite recent deep learning developments in remote sensing, to the best of our knowledge there is no such method to tackle multi-class change segmentation that directly processes raw 3D PCs. Thereby, based on advances in deep learning for change detection in 2D images and for analysis of 3D point clouds, we propose a deep Siamese KPConv network that deals with raw 3D PCs to perform change detection and categorization in a single step. Experimental results are conducted on synthetic and real data of various kinds (LiDAR, multi-sensors). Tests performed on simulated low density LiDAR and multi-sensor datasets show that our proposed method can obtain up to 80% of mean of IoU over classes of changes, leading to an improvement ranging from 10% to 30% over the state-of-the-art. A similar range of improvements is attainable on real data. Then, we show that pre-training Siamese KPConv on simulated PCs allows us to greatly reduce (more than 3,000
) the annotations required on real data. This is a highly significant result to deal with practical scenarios. Finally, an adaptation of Siamese KPConv is realized to deal with change classification at PC scale. Our network overtakes the current state-of-the-art deep learning method by 23% and 15% of mean of IoU when assessed on synthetic and public Change3D datasets, respectively. The code is available at the following link: https://github.com/IdeGelis/torch-points3d-SiameseKPConv.Numéro de notice : A2023-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.02.001 Date de publication en ligne : 17/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.02.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102805
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 274 - 291[article]
Titre : AI4GEO: LOD0 Generation for 3D building models Type de document : Article/Communication Auteurs : Pierre Lassalle, Auteur ; Bruno Vallet , Auteur ; Etienne Le Bihan, Auteur ; Pierre-Marie Brunet, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2023 Projets : AI4GEO / Conférence : JURSE 2023, Joint Urban Remote Sensing Event 17/05/2023 19/05/2023 Heraklion Grèce Proceedings IEEE Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] image satellite
[Termes IGN] niveau de détail
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] zone urbaineRésumé : (Auteur) Recent studies on Earth observation are improved by the proliferation of imaging sensors able to capture large datasets with a high spatial resolution. As a result, many approaches have been proposed for 3D modeling, remote sensing (RS), image processing and mapping. In this scope, three-dimensional (3D) mapping of urban areas has a great potential to provide the user with a precise scene understanding. The AI4GEO project aims at developing an automatic solution for producing 3D geospatial information with new added-value services. This paper will first introduce the AI4GEO initiative, context and overall objectives. It will then present the current status regarding 3D reconstruction of urban areas, in particular LOD0 building shape generation using satellite data. Numéro de notice : C2023-010 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/JURSE57346.2023.10144155 Date de publication en ligne : 08/06/2023 En ligne : https://doi.org/10.1109/JURSE57346.2023.10144155 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103311 Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)PermalinkExploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)PermalinkHow to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)PermalinkImproving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)PermalinkMulti-information PointNet++ fusion method for DEM construction from airborne LiDAR data / Hong Hu in Geocarto international, vol 38 n° 1 ([01/01/2023])PermalinkPSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images / Teng Wu (2023)PermalinkDes relevés sur mesure pour la sentinelle des Pyrénées / Marielle Mayo in Géomètre, n° 2209 (janvier 2023)PermalinkTree position estimation from TLS data using hough transform and robust least-squares circle fitting / Maja Michałowska in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)PermalinkTree species classification in a typical natural secondary forest using UAV-borne LiDAR and hyperspectral data / Ying Quan in GIScience and remote sensing, vol 60 n° 1 (2023)PermalinkUAV DTM acquisition in a forested area – comparison of low-cost photogrammetry (DJI Zenmuse P1) and LiDAR solutions (DJI Zenmuse L1) / Martin Štroner in European journal of remote sensing, vol 56 n° 1 (2023)Permalink