Descripteur
Documents disponibles dans cette catégorie (628)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Accuracy analysis of UAV photogrammetry using RGB and multispectral sensors / Nikola Santrač in Geodetski vestnik, vol 67 n° 4 (December 2023)
[article]
Titre : Accuracy analysis of UAV photogrammetry using RGB and multispectral sensors Type de document : Article/Communication Auteurs : Nikola Santrač, Auteur ; Pavel Benka, Auteur ; Mehmed Batilović, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 459 - 472 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image RVB
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] qualité des donnéesRésumé : (auteur) In recent years, unmanned aerial vehicles (UAVs) have become increasingly important as a tool for quickly collecting high-resolution (spatial and spectral) imagery of the Earth's surface. The final products are highly dependent on the choice of values for various parameters in flight planning, the type of sensors, and the processing of the data. In this paper ground control points (GCPs) were first measured using the Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) method, and then due to the low height accuracy of the GNSS RTK method all points were measured using a detailed leveling method. This study aims to provide a basic assessment of quality, including four main aspects: (1) the difference between an RGB sensor and a five-band multispectral sensor on accuracy and the amount of data, (2) the impact of the number of GCPs on the accuracy of the final products, (3) the impact of different altitudes and cross flight strips, and (4) the accuracy analysis of multi-altitude models. The results suggest that the type of sensor, flight configuration, and GCP setup strongly affect the quality and quantity of the final product data while creating a multi-altitude model does not result in the expected quality of data. With its unique combination of sensors and parameters, the results and recommendations presented in this paper can assist professionals and researchers in their future work. Numéro de notice : A2023-241 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.15292/geodetski-vestnik.2023.04.459-472 Date de publication en ligne : 01/12/2023 En ligne : https://dx.doi.org/10.15292/geodetski-vestnik.2023.04.459-472 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103604
in Geodetski vestnik > vol 67 n° 4 (December 2023) . - pp 459 - 472[article]
Titre : Pointless global bundle adjustment with relative motions Hessians Type de document : Article/Communication Auteurs : Ewelina Rupnik , Auteur ; Marc Pierrot-Deseilligny , Auteur Editeur : Computer vision foundation CVF Année de publication : 2023 Conférence : CVPR 2023, IEEE Conference on Computer Vision and Pattern Recognition 18/06/2023 22/06/2023 Vancouver Colombie britannique - Canada OA Proceedings Importance : pp 6517 - 6525 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] compensation par faisceaux
[Termes IGN] estimation de pose
[Termes IGN] matriceIndex. décimale : 33.30 Photogrammétrie numérique Résumé : (auteur) Bundle adjustment (BA) is the standard way to optimise camera poses and to produce sparse representations of a scene. However, as the number of camera poses and features grows, refinement through bundle adjustment becomes inefficient. Inspired by global motion averaging methods, we propose a new bundle adjustment objective which does not rely on image features' reprojection errors yet maintains precision on par with classical BA. Our method averages over relative motions while implicitly incorporating the contribution of the structure in the adjustment. To that end, we weight the objective function by local hessian matrices-a by-product of local bundle adjustments performed on relative motions (eg, pairs or triplets) during the pose initialisation step. Such hessians are extremely rich as they encapsulate both the features' random errors and the geometric configuration between the cameras. These pieces of information propagated to the global frame help to guide the final optimisation in a more rigorous way. We argue that this approach is an upgraded version of the motion averaging approach and demonstrate its effectiveness on both photogrammetric datasets and computer vision benchmarks. Numéro de notice : C2023-008 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers OA paper Thématique : IMAGERIE/INFORMATIQUE/MATHEMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans En ligne : https://openaccess.thecvf.com/content/CVPR2023W/PCV/papers/Rupnik_Pointless_Glob [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103282 Vine canopy reconstruction and assessment with terrestrial Lidar and aerial imaging / Igor Petrovic in Remote sensing, vol 14 n° 22 (November-2 2022)
[article]
Titre : Vine canopy reconstruction and assessment with terrestrial Lidar and aerial imaging Type de document : Article/Communication Auteurs : Igor Petrovic, Auteur ; Matej Sečnik, Auteur ; Marko Hočevar, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5894 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] analyse comparative
[Termes IGN] couvert végétal
[Termes IGN] défoliation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage de données
[Termes IGN] épandage
[Termes IGN] lasergrammétrie
[Termes IGN] pas d'échantillonnage au sol
[Termes IGN] photogrammétrie aérienne
[Termes IGN] Slovénie
[Termes IGN] viticultureRésumé : (auteur) For successful dosing of plant protection products, the characteristics of the vine canopies should be known, based on which the spray amount should be dosed. In the field experiment, we compared two optical experimental methods, terrestrial lidar and aerial photogrammetry, with manual defoliation of some selected vines. Like those of other authors, our results show that both terrestrial lidar and aerial photogrammetry were able to represent the canopy well with correlation coefficients around 0.9 between the measured variables and the number of leaves. We found that in the case of aerial photogrammetry, significantly more points were found in the point cloud, but this depended on the choice of the ground sampling distance. Our results show that in the case of aerial UAS photogrammetry, subdividing the vine canopy segments to 5 × 5 cm gives the best representation of the volume of vine canopies. Numéro de notice : A2022-881 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14225894 Date de publication en ligne : 21/11/2022 En ligne : https://doi.org/10.3390/rs14225894 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102203
in Remote sensing > vol 14 n° 22 (November-2 2022) . - n° 5894[article]Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry / Wei Wang in Computers & geosciences, vol 166 (September 2022)
[article]
Titre : Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry Type de document : Article/Communication Auteurs : Wei Wang ; Wenbo Zhao, Auteur ; Bo Chai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105191 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] Chine
[Termes IGN] discontinuité
[Termes IGN] éboulement
[Termes IGN] extraction de données
[Termes IGN] front rocheux
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] matrice
[Termes IGN] pente
[Termes IGN] photogrammétrie aérienne
[Termes IGN] profondeur
[Termes IGN] risque naturel
[Termes IGN] semis de points
[Termes IGN] texture d'imageRésumé : (auteur) Discontinuity extraction and interpretation of fractured masses is of high importance when analyzing rock slope stability. Regarding high-steep slopes, which are areas that are difficult to reach, traditional methods to obtain discontinuities, such as the sample window method (SWM), are unlikely to be implemented, resulting in challenges for the identification of potential rockfalls. With the development of the unmanned ariel vehicle (UAV) technology, discontinuity extraction can overcome by noncontact photogrammetry. However, there is still a lack of comprehensive and practical solutions to fulfill rockfall identification from field investigation to in-door analysis. For this purpose, a practical case study was carried out in Wanzhou, Chongqing, China, where a 400 m vertical rock slope prone to rockfall was collected as a typical example. The centimeter-level 3D Textured Digital Outcrop Model (TDOM) and dense Point Cloud (PC) were established using high-resolution photos acquired by nap-of-the-object photogrammetry. The discontinuity of the fractured mass was interpreted by fully taking advantage of both 2D images (texture information-dominated) and 3D PCs (depth information-dominated). Furthermore, a new parameter rock cavity rate (RCR) and the corresponding semiautomatic extraction method based on point clouds are proposed. Subsequently, the possibility of various failure modes and their joint combinations were determined by kinematic analysis. Finally, the rock slope stability was determined using a matrix that considers the slope mass rating (SMR) value and the parameter RCR. The proposed process flow and relevant techniques in this study provide an operable and practical solution for further application regarding discontinuity interpretation and potential rockfall identification on high-steep slopes. Numéro de notice : A2022-655 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105191 Date de publication en ligne : 08/07/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105191 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101504
in Computers & geosciences > vol 166 (September 2022) . - n° 105191[article]Learning indoor point cloud semantic segmentation from image-level labels / Youcheng Song in The Visual Computer, vol 38 n° 9 (September 2022)
[article]
Titre : Learning indoor point cloud semantic segmentation from image-level labels Type de document : Article/Communication Auteurs : Youcheng Song, Auteur ; Zhengxing Sun, Auteur ; Qian Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3253 - 3265 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] apprentissage dirigé
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] image RVB
[Termes IGN] scène intérieure
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) The data-hungry nature of deep learning and the high cost of annotating point-level labels make it difficult to apply semantic segmentation methods to indoor point cloud scenes. Therefore, exploring how to make point cloud segmentation methods less rely on point-level labels is a promising research topic. In this paper, we introduce a weakly supervised framework for semantic segmentation on indoor point clouds. To reduce the labor cost in data annotation, we use image-level weak labels that only indicate the classes that appeared in the rendered images of point clouds. The experiments validate the effectiveness and scalability of our framework. Our segmentation results on both ScanNet and S3DIS datasets outperform the state-of-the-art method using a similar level of weak supervision. Numéro de notice : A2022-793 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-022-02569-0 Date de publication en ligne : 02/07/2022 En ligne : https://doi.org/10.1007/s00371-022-02569-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101917
in The Visual Computer > vol 38 n° 9 (September 2022) . - pp 3253 - 3265[article]Efficient dike monitoring using terrestrial SFM photogrammetry / Laurent Froideval in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)PermalinkHybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy / Norbert Haala in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)PermalinkExploiting light directionality for image-based 3D reconstruction of non-collaborative surfaces / Ali Karami in Photogrammetric record, vol 37 n° 177 (March 2022)PermalinkAutomatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments / Daniela Craciun (2022)PermalinkAccurate mapping method for UAV photogrammetry without ground control points in the map projection frame / Jianchen Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)PermalinkFeature matching for multi-epoch historical aerial images / Lulin Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 182 (December 2021)PermalinkFully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods / Ferdinand Maiwald in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)PermalinkAutomatic detection of planted trees and their heights using photogrammetric rpa point clouds / Kênia Samara Mourão Santos in Boletim de Ciências Geodésicas, vol 27 n° 3 ([01/10/2021])PermalinkDetermining optimal photogrammetric adjustment of images obtained from a fixed-wing UAV / Karolina Pargiela in Photogrammetric record, Vol 36 n° 175 (September 2021)PermalinkThree-dimensional building change detection using object-based image analysis (case study: Tehran) / Fatemeh Tabib Mahmoudi in Applied geomatics, vol 13 n° 3 (September 2021)PermalinkResearch on 3D model reconstruction based on a sequence of cross-sectional images / Zhiguo Dong in Machine Vision and Applications, vol 32 n°4 (July 2021)PermalinkA unified framework of bundle adjustment and feature matching for high-resolution satellite images / Xiao Ling in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 7 (July 2021)PermalinkGeometric calibration of satellite laser altimeters based on waveform matching / Shaoning Li in Photogrammetric record, vol 36 n° 174 (June 2021)PermalinkRobust detection of non-overlapping ellipses from points with applications to circular target extraction in images and cylinder detection in point clouds / Reza Maalek in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)PermalinkDigital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy / Sergio Jiménez-Jiménez in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)PermalinkImplementation of close range photogrammetry using modern non-metric digital cameras for architectural documentation / Mariem A. Elhalawani in Geodesy and cartography, vol 47 n° 1 (January 2021)PermalinkAutomated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)PermalinkPermalinkPermalinkElevation models for reproducible evaluation of terrain representation / Patrick Kennelly in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)Permalink