Détail de l'auteur
Auteur José Avila-Rodriguez |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Estimating the count of completeness errors in geographic data sets by means of a generalized Waring regression model / Francisco Javier Ariza-López in International journal of geographical information science IJGIS, vol 29 n° 8 (August 2015)
[article]
Titre : Estimating the count of completeness errors in geographic data sets by means of a generalized Waring regression model Type de document : Article/Communication Auteurs : Francisco Javier Ariza-López, Auteur ; José Avila-Rodriguez, Auteur Année de publication : 2015 Article en page(s) : pp 1394 - 1418 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] Andalousie
[Termes IGN] cartographie topographique
[Termes IGN] erreur absolue
[Termes IGN] modèle de régressionRésumé : (Auteur) In this article, we propose a statistical model for estimating the probable number of completeness errors (omissions plus commissions) in a cell (a map tile or cluster) of a data set to guide updating or improvement efforts. The number of completeness errors is a count data variable related to some exogenous covariates that may also be known for each cell (e.g. count of features, rural or urban typology, etc.) and to other unknown variation sources. We propose and adjust a generalized Waring regression model for counting these errors in cells of 1 × 1 km2 on the Topographic Map of Andalusia (Spain). This model is compared with the Poisson regression model and the negative binomial regression model and performs better. The empirical relationship established by the model indicates that the number of completeness errors is related to the following exogenous covariates: the number of cartographic features of the data set, the fact that the cell covers a littoral or urban zone and the spatial division of the contracted suppliers. For cells having less than 5 errors, most of the variability corresponds to unknown external factors (liability), but when the number of errors rises, the greater part of the variability is due to unknown internal characteristics of each cell (proneness). With these estimations, the producer can derivate statistical summaries and spatial representations and develop better planning of production activities such as actualization. Numéro de notice : A2015-605 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2015.1010536 En ligne : https://doi.org/10.1080/13658816.2015.1010536 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78029
in International journal of geographical information science IJGIS > vol 29 n° 8 (August 2015) . - pp 1394 - 1418[article]Using international standards to control the positional quality of spatial data / Francisco Javier Ariza-López in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 8 (August 2015)
[article]
Titre : Using international standards to control the positional quality of spatial data Type de document : Article/Communication Auteurs : Francisco Javier Ariza-López, Auteur ; José Avila-Rodriguez, Auteur Année de publication : 2015 Article en page(s) : pp 657 - 668 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] contrôle qualité
[Termes IGN] données localisées numériques
[Termes IGN] erreur de positionnement
[Termes IGN] norme de données localiséesRésumé : (auteur) A positional quality control method based on the application of the International Standard ISO 2859 is proposed. This entails a common framework for dealing with the control of all other spatial data quality components (e.g., completeness, consistency, etc.). We propose a relationship between the parameters “acceptable quality level” and “limiting quality” of the international standard and positional quality by means of observed error models. This proposal does not require any assumption for positional errors (e.g., normality), which means that the application is universal. It can be applied to any type of positional and geometric controls (points, line-strings), to any dimension (1D, 2D, 3D, etc.) and with parametric or non-parametric error models (e.g., lidar). This paper introduces ISO 2859, presents the statistical bases of the proposal and develops two examples of application, the first dealing with a lot-by-lot control and the second, isolated lot control. Numéro de notice : A2015-983 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.14358/PERS.81.8.657 En ligne : https://doi.org/10.14358/PERS.81.8.657 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80254
in Photogrammetric Engineering & Remote Sensing, PERS > vol 81 n° 8 (August 2015) . - pp 657 - 668[article]Architecture for a future C-band/L-band GNSS mission : Part 2 signal considerations and related user terminal aspects / José Avila-Rodriguez in Inside GNSS, vol 4 n° 4 (July - August 2009)
[article]
Titre : Architecture for a future C-band/L-band GNSS mission : Part 2 signal considerations and related user terminal aspects Type de document : Article/Communication Auteurs : José Avila-Rodriguez, Auteur ; J.H. Won, Auteur ; S. Wallner, Auteur ; et al., Auteur Année de publication : 2009 Article en page(s) : 21 p. ; pp 52 - 72 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Missions spatiales
[Termes IGN] bande C
[Termes IGN] bande L
[Termes IGN] charge utile
[Termes IGN] composant électronique
[Termes IGN] interférence
[Termes IGN] mission spatiale
[Termes IGN] signal GNSSRésumé : (Auteur) Almost all GNSS navigation signals operate in the crowded L-band portion of the radio frequency spectrum. In the past, C-band spectrum has been considered — and rejected — for GNSS services due to a couple of substantial obstacles, despite some distinct technical advantages. However, continued proliferation of signals in L-band and advances in electronics and spacecraft technologies have prompted a new look at C-band for future GNSS services. This article is the second of a two-part series describing the results of a new European Space Agency–sponsored study on the subject. Copyright Gibbons Media & Research LLC Numéro de notice : A2009-662 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33563
in Inside GNSS > vol 4 n° 4 (July - August 2009) . - 21 p. ; pp 52 - 72[article]Voir aussiExemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 159-09041 SL Revue Centre de documentation Revues en salle Disponible Documents numériques
en open access
rchitecture for a future C-band/L-band GNSS ... - pdf éditeurAdobe Acrobat PDF
Titre : On generalized signal waveforms for satellite navigation Type de document : Thèse/HDR Auteurs : José Avila-Rodriguez, Auteur Editeur : Munich : Universität der Bundeswehr Année de publication : 2008 Importance : 438 p. Format : 21 x 30 cm Note générale : bibliographie
Vollständiger Abdruck der bei der Fakultät für Luft- und Raumfahrttechnik der Universität der Bundeswehr München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) eingereichten Dissertation / A thesis submitted to the faculty of aerospace engineering in fulfillment of the requirements for the degree of doctor of engineeringLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] bande spectrale
[Termes IGN] forme d'onde
[Termes IGN] modulation de fréquence
[Termes IGN] modulation du signal
[Termes IGN] onde porteuse
[Termes IGN] signal GNSSRésumé : (auteur) This thesis provides a comprehensive overview of all current and planned satellite navigation systems, either global or regional, putting special emphasis on their signal structure. Particular attention is paid to the European Global Navigation Satellite System Galileo, under development at the moment. The results of this work can be considered as a significant contribution to the design and development of the Galileo’s Open Service (OS) in the E1 frequency band. The present work provides as main contribution a generally valid theoretical framework with which all current and future navigation signals can be described. Generalized signal waveforms and their corresponding time and spectral characteristics are derived and investigated. Complete families of signals are presented and analyzed regarding their spectral and performance characteristics, underlining their potential for future generations of satellite navigation systems. This thesis proves that the generalized signal waveforms proposed in this work cover any current and other optimized signals that could be proposed in the future. In this sense, it is shown that all current navigation signals can be mathematically described as Multilevel Coded spreading Symbols or, in particular, as Binary Coded Symbols. Using the analytical expressions of the generalized signal model, the corresponding generalized signal waveforms are further studied regarding their Spectral Separation Coefficients (SSCs). This parameter is of great interest in satellite navigation to understand the compatibility between different signals. Generalized formulas for smooth spectra are also derived to calculate the SSCs between any two arbitrary signals. Particular cases of interest are computed following the obtained analytical expressions and by means of simulations with real Pseudo Random Noise (PRN) codes. Results from this comparison show a perfect matching between the predicted analytical results and the numerical computations. Realistic scenarios are carried out to assess the impact of non-ideal PRN codes and navigation data onto the spectral properties that have been derived analytically. Finally, current and new multiplexing schemes are studied in detail together with the feasibility to introduce optimized signal waveforms. Special attention is paid to understand the required changes that are necessary to multiplex non-binary signals. Pros and Cons of the different solutions are discussed and investigated with regard to the application of future signal waveforms. Among these last ones, the Composite Binary Offset Carrier (CBOC) implementation of the Multiplexed Binary Offset Carrier (MBOC) modulation for the Galileo’s Open Service signal in the E1 frequency band deserves an important chapter. In addition, some chapters are dedicated to analyze receiver structures optimized to work with MBOC for both GPS and Galileo. Note de contenu : 1. Introduction
1.1 Objectives of this Thesis
1.2 Contributions of this Thesis
1.3 Thesis Outline
2. Global Navigation Satellite Systems (GNSS)
2.1 GNSS – Thinking global
2.2 Scenes from the Present
2.3 The Global Positioning System (GPS
2.4 Galileo
2.5 GLONASS
2.6 Compass
2.7 Summary on Global Navigation Satellite Systems
2.8 Regional Satellite Navigation Systems
2.9 GNSS Augmentation Systems
2.10 Pseudolites
3. Galileo Baseline Evolution
3.1 Introduction
3.2 Square-Root Raised Cosine (SRRC) Signal waveforms for Galileo ?
3.3 Galileo Baseline of 2002
3.4 The Long Way to the Agreement
3.5 Agreement of 2004: BOC(1,1)+BOCcos(15, 2.5)
3.6 The Way to Today’s Baseline
3.7 MBOC(6,1)
4. GNSS Signal Structure
4.1 GNSS Modulation Schemes
4.2 Multilevel Coded Spreading Symbols (MCS)
4.3 Binary Coded Symbols (BCS)
4.4 Sinusoidal Multilevel Coded Symbol (SMCS) Signals
4.5 Generalized Multilevel Coded Symbols (GMCS)
4.6 CBCS Modulation definition and analysis of performance
4.7 MBOC modulation definition and analysis
4.8 Other Modulation Schemes
5. Spectral Separation Coefficient (SSC)
5.1 Definition
5.2 Derivation of analytical expressions
6. Spectral Separation Coefficients with data and non ideal codes
6.1 Analytical expressions when data is present
6.2 Computation of non-ideal Spectral Separation Coefficients
7. Signal Multiplex Techniques for GNSS
7.1 Introduction
7.2 Multiplexing Schemes
7.3 Linear Modulation (Spatial Combining)
7.4 Majority Signal Voting
7.5 Hard Limiting
7.6 Quadrature Product Sub-carrier Modulation
7.7 Coherent Adaptive Sub-Carrier Modulation (CASM) and Interplex
7.8 Intervoting (Interplex + Majority Voting
7.9 FDMA vs. CDMA
8. Conclusions and Recommendations
8.1 Conclusions
8.2 Recommendations for Future WorkNuméro de notice : 14903 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : PhD : aerospace engineering : Universität der Bundeswehr München : 2008 DOI : sans En ligne : http://athene-forschung.unibw.de/node?id=86167 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76793