Descripteur
Documents disponibles dans cette catégorie (1971)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Titre : Radar backscatter contribution to tropical forest disturbance monitoring Type de document : Thèse/HDR Auteurs : Bertrand Ygorra, Auteur ; Jean-Pierre Wigneron, Directeur de thèse ; Serge Riazanoff, Directeur de thèse ; Frédéric Frappart, Directeur de thèse Editeur : Bordeaux : Université de Bordeaux Année de publication : 2022 Importance : 253 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de BordeauxLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] forêt tropicale
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] télédétection en hyperfréquenceIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Earth Observations are increasingly used to monitor environmental problems. Its interests lie in the ability of sensors aboard satellites to provide information at global, regional and local scales. Optical remote sensing has shown great potential for the monitoring of forest disturbances. Until recently, deforestation monitoring systems were mainly based on remotely sensed optical images. In the intertropical latitudes, such images often face limitations of frequent cloud cover, leading to late detection or misdetections due to the low temporal availability of new images uncontaminated by clouds. In tropical humid forests, regrowth can close canopy gaps between two non-cloud-contaminated optical images used for detection.New SAR (Synthetic Aperture Radar) systems have opened new perspectives for forest disturbance monitoring in tropical humid forests (Sentinel-1, PALSAR-2). These active sensors penetrate the clouds. The availability of Sentinel-1 C-band images at high spatial and temporal resolutions makes it a potential substitute of optical systems for monitoring disturbances in forest covers.This work is articulated around three parts. The first part consists in the development of a new change detection method for monitoring disturbances in forest cover, based on the Cumulative Sum algorithm (CuSum) combined with a bootstrap analysis. The method was applied to time-series of Sentinel-1 Ground-Range Detected (GRD) dual polarization (VV, VH) images obtained in a legal forest concession near Kisangani in the Democratic Republic of the Congo. The results from VV and VH polarization were intersected in VV x VH result map, and a spatial recombination of a high Critical Threshold (Tc) with a low critical threshold was performed. The second part of this work is to develop a multiple-breakpoints version of the CuSum cross-Tc called ReCuSum to further enhance the ability to monitor changes in forest cover. The development was made by applying the CuSum cross-Tc over a time-series in an iterative manner, in the State of Parà, Brazilian Amazon. The third axis of this thesis is to develop a Near-Real-Time (NRT) version of the CuSum cross-Tc and to compare it with the state-of-the-art NRT algorithms (RADD, JJ-FAST GLAD, DETER-B, DETER-R). Note de contenu :
Chapter 1. General introduction
1.1. Introduction
1.2. Thesis objectives and outline
Chapter 2. Radar remote sensing
2.1. The RADAR technique
2.2. Instrumental parameters
2.3. Scattering mechanisms
2.4. Synthetic Aperture Radar
2.5. Sentinel-1
Chapter 3. Methods for monitoring forest cover change using spaceborne SAR sensors
3.1. Introduction
3.2. Publication
3.3. Contribution and perspectives
Chapter 4. Monitoring forest disturbances from Sentinel-1 time-series: a CuSum?based approach
4.1. Introduction
4.2. Publication
4.3. Conference note: IGARSS 2021
4.4. Contribution to this work and perspectives in the PhD course
Chapter 5. Multiple breakpoints Evolution of the cross-Tc CuSum: ReCuSum
5.1. Introduction
5.2. Publication
5.3. Conference note: IGARSS 2022
5.4. Contribution to this work and perspective
Chapter 6. Development of the CuSum cross-Tc as an NRT algorithm
6.1. Introduction
6.2. Publication
6.3. Contribution and perspectives
Chapter 7. Conclusion and perspectives
7.1. Conclusion
7.2. PerspectivesNuméro de notice : 26964 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Physique de l’environnement : Bordeaux : 2022 Organisme de stage : INRAE nature-HAL : Thèse DOI : sans Date de publication en ligne : 16/02/2023 En ligne : https://theses.hal.science/tel-03991973v1/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103001 vol 12 n° 10 - October 2021 (Bulletin de Remote sensing letters) / Remote sensing and photogrammetry society
[n° ou bulletin]
Titre : vol 12 n° 10 - October 2021 Type de document : Périodique Auteurs : Remote sensing and photogrammetry society, Auteur Année de publication : 2021 Importance : 65 p. Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection Numéro de notice : sans Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Numéro de périodique En ligne : https://www.tandfonline.com/toc/trsl20/12/10 Format de la ressource électronique : URL bulletin Permalink : https://documentation.ensg.eu/index.php?lvl=bulletin_display&id=33503 [n° ou bulletin]Multi-modal learning in photogrammetry and remote sensing / Michael Ying Yang in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)
[article]
Titre : Multi-modal learning in photogrammetry and remote sensing Type de document : Article/Communication Auteurs : Michael Ying Yang, Auteur ; Loïc Landrieu , Auteur ; Devis Tuia, Auteur ; Charles Toth, Auteur Année de publication : 2021 Projets : 1-Pas de projet / Article en page(s) : pp 54 - 54 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] acquisition d'images
[Termes IGN] apprentissage automatique
[Termes IGN] données multisourcesRésumé : (Auteur) [Editorial] There is a growing interest in the photogrammetry and remote sensing community for multi-modal data, i. e., data simultaneously acquired from a variety of platforms, including satellites, aircraft, UAS/UGS, autonomous vehicles, etc., by different sensors, such as radar, optical, LiDAR. Thanks to their different spatial, spectral, or temporal resolutions, the use of complementary data sources leads to richer and more robust information extraction. We expect that the use of multiple modalities will rapidly become a standard approach in the future. The main difficulty of jointly processing multi-modal data is due to the differences in structure among modalities. Another issue is the unbalanced number of labelled samples available across modalities, resulting in a significant gap in performance when models are trained separately. Clearly, the photogrammetry and remote sensing community has not yet exploited the full potential of multi-modal data. Neural networks seem well suited for accommodating different data sources, thanks to their capabilities to learn representations adapted to each task in an end-to-end fashion. In this context, there is a strong need for research and development of approaches for multi-sensory and multi-modal deep learning within the geospatial domain. Numéro de notice : A2021-364 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.03.022 Date de publication en ligne : 23/04/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.03.022 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97660
in ISPRS Journal of photogrammetry and remote sensing > vol 176 (June 2021) . - pp 54 - 54[article]
Titre : Remote Sensing Type de document : Monographie Auteurs : Andrew Hammond, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2021 Importance : 140 p. ISBN/ISSN/EAN : 978-1-83880-978-2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] Amérique du sud
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données spatiotemporelles
[Termes IGN] Enhanced vegetation index
[Termes IGN] géostatistique
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] Inde
[Termes IGN] mésosphère
[Termes IGN] précision stéréoscopique
[Termes IGN] sciences naturelles
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] stratosphère
[Termes IGN] système d'information géographique
[Termes IGN] température au sol
[Termes IGN] troposphèreIndex. décimale : 35.00 Télédétection - généralités Résumé : (Editeur) This Edited Volume is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Remote Sensing. The book comprises single chapters authored by various researchers and edited by an expert active in this research area. All chapters are complete in themselves but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on this field of study, and open new possible research paths for further novel developments. Note de contenu : 1. Lidar Observations in South America. Part I - Mesosphere and Stratosphere
2. Lidar Observations in South America. Part II - Troposphere
3. Application of Remote Sensing in Natural Sciences
4. Assessment of Ecological Disturbance Caused by Flood and Fire in Assam Forests, India, Using MODIS Time Series Data of 2001-2011
5. Delineation of Open-Pit Mining Boundaries on Multispectral Imagery
6. Stereoscopic Precision of the Large Format Digital Cameras
7. Remote Sensing Applications in Disease MappingNuméro de notice : 26799 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.87829 Date de publication en ligne : 08/12/2021 En ligne : https://doi.org/10.5772/intechopen.87829 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100066 Remote sensing and GIS / Basudeb Bhatta (2021)
Titre : Remote sensing and GIS Type de document : Guide/Manuel Auteurs : Basudeb Bhatta, Auteur Mention d'édition : 3ème édition Editeur : Oxford, Londres, ... : Oxford University Press Année de publication : 2021 Importance : 752 p. Format : 24 x 18 cm ISBN/ISSN/EAN : 978-0-19-949664-8 Note générale : Bibliographie
additional reading material with Oxford arealLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] acquisition d'images
[Termes IGN] airborne multispectral scanner
[Termes IGN] analyse spatiale
[Termes IGN] Global Navigation Satellite System
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Lidar
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation 3D
[Termes IGN] orthorectification
[Termes IGN] Passive and Active L and S band Sensor
[Termes IGN] photographie aérienne
[Termes IGN] Satellite Microwave Radiometer
[Termes IGN] scène 3D
[Termes IGN] stéréoscopie
[Termes IGN] système d'information géographique
[Termes IGN] traitement d'image
[Termes IGN] visualisation 3DIndex. décimale : 35.00 Télédétection - généralités Résumé : (Editeur) Beginning with the history and basic concepts of remote sensing and GIS, the book gives an exhaustive coverage of optical, thermal, and microwave remote sensing, global navigation satellite systems (such as GPS and IRNSS), digital photogrammetry, visual image analysis, digital image processing, spatial and attribute data model, geospatial analysis, and planning, implementation, and management of GIS. It also presents the modern trends of remote sensing and GIS with an illustrated discussion on its numerous applications. Note de contenu : 1. Concept of Remote Sensing
1.1 Introduction
1.2 Distance of Remote Sensing
1.3 Definition of Remote Sensing
1.4 Remote Sensing: Art and/or Science
1.5 Data
1.6 Remote Sensing Process
1.7 Source of Energy
1.8 Interaction with Atmosphere
1.9 Interaction with Target
1.9.1 Hemispherical Absorptance, Transmittance, and Reflectan
1.10 Interaction with the Atmosphere Again
1.11 Recording of Energy by Sensor
1.12 Transmission, Reception, and Processing
1.13 Interpretation and Analysis
1.14 Applications of Remote Sensing
1.15 Advantages of Remote Sensing
1.16 Limitations of Remote Sensing
1.17 Ideal Remote Sensing System
2. Types of Remote Sensing and Sensor Characteristics
2.1 Introduction
2.2 Types of Remote Sensing
2.3 Characteristics of Images
2.4 Orbital Characteristics of Satellite
2.5 Remote Sensing Satellites
2.6 Concept of Swath
2.7 Concept of Nadir
2.8 Sensor Resolutions
2.9 Image Referencing System
2.9.1 Path
2.9.2 Row
2.9.3 Orbital Calendar
3. History of Remote Sensing and Indian Space Program
3.1 Introduction
3.2 The Early Age
3.3 The Middle Age
3.4 The Modern Age or Space Age
3.5 Indian Space Program
4. Photographic Imaging
4.1 Introduction
4.2 Camera Systems
4.3 Types of Camera
4.4 Filter
4.5 Film
4.6 Geometry of Aerial Photography
4.7 Ideal Time and Atmosphere for Aerial Remote Sensing
5. Digital Imaging
5.1 Introduction
5.2 Digital Image
5.3 Sensor
5.4 Imaging by Scanning Technique
5.5 Hyper-spectral Imaging
5.6 Imaging By Non-scanning Technique
5.7 Thermal Remote Sensing
5.8 Other Sensors
6. Microwave Remote Sensing
6.1 Introduction
6.2 Passive Microwave Remote Sensing
6.3 Active Microwave Remote Sensing
6.4 Radar Imaging
6.5 Airborne Versus Space-Borne Radars
6.6 Radar Systems
7. Ground-truth Data and Global Positioning System
7.1 Introduction
7.2 Requirements of Ground-Truth Data
7.3 Instruments for Ground Truthing
7.4 Parameters of Ground Truthing
7.5 Factors of Spectral Measurement
7.6 Global Navigation Satellite System
8. Photogrammetry
8.1 Introduction
8.2 Development of Photogrammetry
8.3 Classification of Photogrammetry
8.4 Photogrammetric Process
8.5 Acquisition of Imagery and its Support Data
8.6 Orientation and Triangulation
8.7 Stereo Model Compilation
8.8 Stereoscopic 3D Viewing
8.9 Stereoscopic Measurement
8.10 DTM/DEM Generation
8.11 Contour Map Generation
8.12 Orthorectification
8.13 3D Feature Extraction
8.14 3D Scene Modelling
8.15 Photogrammetry and LiDAR
8.16 Radargrammetry and Radar Interferometry
8.17 Limitations of Photogrammetry
9. Visual Image Interpretation
9.1 Introduction
9.2 Information Extraction by Human and Computer
9.3 Remote Sensing Data Products
9.4 Border or Marginal Information
9.5 Image Interpretation
9.6 Elements of Visual Image Interpretation
9.7 Interpretation Keys
9.8 Generation of Thematic Maps
9.9 Thermal Image Interpretation
9.10 Radar Image Interpretation
10. Digital Image Processing
10.1 Introduction
10.2 Categorization of Image Processing
10.3 Image Processing Systems
10.4 Digital Image
10.5 Media for Digital Data Recording, Storage, and Distribution
10.6 Data Formats of Digital Image
10.7 Header Information
10.8 Display of Digital Image
10.9 Pre-processing
10.10 Image Enhancement
10.11 Image Transformation
10.12 Image Classification
11. Data Integration, Analysis, and Presentation
11.1 Introduction
11.2 Multi-approach of Remote Sensing
11.3 Integration with Ground Truth and Other Ancillary Data
11.4 Integration of Transformed Data
11.5 Integration with GIS
11.6 Process of Remote Sensing Data Analysis
11.7 The Level of Detail
11.8 Limitations of Remote Sensing Data Analysis
11.9 Presentation
12. Applications of Remote Sensing
12.1 Introduction
12.2 Land Cover and Land Use
12.3 Agriculture
12.4 Forestry
12.5 Geology
12.6 Geomorphology
12.7 Urban Applications
12.8 Hydrology
12.9 Mapping
12.10 Oceans and Coastal Monitoring
12.11 Monitoring of Atmospheric Constituents
PART II Geographic Information Systems and Geospatial Analysis
13. Concept of Geographic Information Systems
13.1 Introduction
13.2 Definitions of GIS
13.3 Key Components of GIS
13.4 GIS-An Integration of Spatial and Attribute Information
13.5 GIS-Three Views of Information System
13.6 GIS and Related Terms
13.7 GIS-A Knowledge Hub
13.8 GIS-A Set of Interrelated Subsystems
13.9 GIS-An Information Infrastructure
13.10 Origin of GIS
14. Functions and Advantages of GIS
14.1 Introduction
14.2 Functions of GIS
14.3 Application Areas of GIS
14.4 Advantages of GIS
14.5 Functional Requirements of GIS
14.6 Limitations of GIS
15. Spatial Data Model
15.1 Introduction
15.2 Spatial, Thematic, and Temporal Dimensions of Geographic Data
15.3 Spatial Entity and Object
15.4 Spatial Data Model
15.5 Raster Data Model
15.6 Vector Data Model
15.7 Raster versus Vector
15.8 Object-Oriented Data Model
15.9 File Formats of Spatial Data
16. Attribute Data Management and Metadata Concept
16.1 Introduction
16.2 Concept of Database and DBMS
16.3 Advantages of DBMS
16.4 Functions of DBMS
16.5 File and Data Access
16.6 Data Models
16.7 Database Models
16.8 Data Models in GIS
16.9 Concept of SQL
16.10 Concept of Metadata
17. Process of GIS
17.1 Introduction
17.2 Data Capture
17.3 Data Sources
17.4 Data Encoding Methods
17.5 Linking of Spatial and Attribute Data
17.6 Organizing Data for Analysis
18. Geospatial Analysis
18.1 Introduction
18.2 Geospatial Data Analysis
18.3 Integration and Modelling of Spatial Data
18.4 Geospatial Data Analysis Methods
18.5 Database Query
18.6 Geospatial Measurements
18.7 Overlay Operations
18.8 Network Analysis
18.9 Surface Analysis
18.10 Geostatistics
18.11 Geovisualization
19. Planning, Implementation, and Management of GIS
19.1 Introduction
19.2 Planning of Project
19.3 Implementation of Project
19.4 Management of Project
19.5 Keys for Successful GIS
19.6 Reasons for Unsuccessful GIS
20. Modern Trends of GIS
20.1 Introduction
20.2 Local to Global Concept in GIS
20.3 Increase in Dimensions in GIS
20.4 Linear to Non-linear Techniques in GIS
20.5 Development in Relation between Geometry and Algebra in GIS
20.6 Development of Common Techniques in GIS
20.7 Integration of GIS and Remote Sensing
20.8 Integration of GIS and Multimedia
20.9 3D GIS
20.9.1 Virtual Reality in GIS
20.10 Integration of 3D GIS and Web GIS
20.11 4D GIS and Real-time GIS
20.12 Mobile GIS
20.12.1 Mobile mapping
20.13 Collaborative GIS (CGIS)
21. Change Detection and Geosimulation
21.1 Visual change detection
21.2 Thresholding
21.3 Image difference
21.4 Image regression
21.5 Image ratioing
21.6 Vegetation index differencing
21.7 Principal component differencing
21.8 Multi-temporal image stock classification
21.9 Post classification comparison
21.10 Change vector analysis
21.12 Cellular automata simulation
21.13 Multi-agent simulation
21.14 ANN learning in simulation
Appendix A - Concept of Map, Coordinate System, and Projection
Appendix B - Concept on Mathematical TopicsNuméro de notice : 26518 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/POSITIONNEMENT Nature : Manuel de cours DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97342 Tephra mass eruption rate from ground-based X-band and L-band microwave radars during the November 23, 2013, Etna Paroxysm / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)PermalinkForeword to the special issue on paving the way for the future of urban remote sensing / Sébastien Lefèvre in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol 13 ([01/01/2020])PermalinkQuantification of the adjacency effect on measurements in the thermal infrared region / Xiaopo Zheng in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)PermalinkInternational workshop on large scale land cover mapping from remote sensing, 3 décembre 2019 / Mathieu Fauvel (2019)PermalinkPermalinkL'occupation et l'usage des sols par télédétection, où en sommes-nous aujourd'hui ? [Introduction] / Clément Mallet (2018)PermalinkPermalinkCan a machine generate humanlike language descriptions for a remote sensing image? / Zhenwei Shi in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)PermalinkJournée Copernicus / Anonyme in Géomatique expert, n° 116 (mai - juin 2017)PermalinkTélédétection pour l'observation des surfaces continentales, Volume 1. Observation des surfaces continentales par télédétection optique / Nicolas Baghdadi (2017)Permalink