Descripteur
Documents disponibles dans cette catégorie (1844)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images / Yingjie Wang in Remote sensing of environment, vol 274 (June 2022)
[article]
Titre : DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images Type de document : Article/Communication Auteurs : Yingjie Wang, Auteur ; Abdelaziz Kallel, Auteur ; Xuebo Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112973 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande spectrale
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] image à haute résolution
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de transfert radiatif
[Termes IGN] radiance
[Termes IGN] réflectance directionnelle
[Termes IGN] scène forestière
[Termes IGN] scène urbaineRésumé : (auteur) Accurate and efficient simulation of remote sensing images is increasingly needed in order to better exploit remote sensing observations and to better design remote sensing missions. DART (Discrete Anisotropic Radiative Transfer), developed since 1992 based on the discrete ordinates method (i.e., standard mode DART-FT), is one of the most accurate and comprehensive 3D radiative transfer models to simulate the radiative budget and remote sensing observations of urban and natural landscapes. Recently, a new method, called DART-Lux, was integrated into DART model to address the requirements of massive remote sensing data simulation for large-scale and complex landscapes. It is developed based on efficient Monte Carlo light transport algorithms (i.e., bidirectional path tracing) and on DART model framework. DART-Lux can accurately and rapidly simulate the bidirectional reflectance factor (BRF) and spectral images of arbitrary landscapes. This paper presents its theory, implementation, and evaluation. Its accuracy, efficiency and advantages are also discussed. The comparison with standard DART-FT in a variety of scenarios shows that DART-Lux is consistent with DART-FT (relative differences Numéro de notice : A2022-398 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112973 Date de publication en ligne : 26/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112973 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100698
in Remote sensing of environment > vol 274 (June 2022) . - n° 112973[article]Extracting the urban landscape features of the historic district from street view images based on deep learning: A case study in the Beijing Core area / Siming Yin in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
[article]
Titre : Extracting the urban landscape features of the historic district from street view images based on deep learning: A case study in the Beijing Core area Type de document : Article/Communication Auteurs : Siming Yin, Auteur ; Xian Guo, Auteur ; Jie Jiang, Auteur Année de publication : 2022 Article en page(s) : n° 326 Note générale : résumé Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Streetview
[Termes IGN] paysage urbain
[Termes IGN] Pékin (Chine)
[Termes IGN] segmentation sémantique
[Termes IGN] site historiqueRésumé : (auteur) Accurate extraction of urban landscape features in the historic district of China is an essential task for the protection of the cultural and historical heritage. In recent years, deep learning (DL)-based methods have made substantial progress in landscape feature extraction. However, the lack of annotated data and the complex scenarios inside alleyways result in the limited performance of the available DL-based methods when extracting landscape features. To deal with this problem, we built a small yet comprehensive history-core street view (HCSV) dataset and propose a polarized attention-based landscape feature segmentation network (PALESNet) in this article. The polarized self-attention block is employed in PALESNet to discriminate each landscape feature in various situations, whereas the atrous spatial pyramid pooling (ASPP) block is utilized to capture the multi-scale features. As an auxiliary, a transfer learning module was introduced to supplement the knowledge of the network, to overcome the shortage of labeled data and improve its learning capability in the historic districts. Compared to other state-of-the-art methods, our network achieved the highest accuracy in the case study of Beijing Core Area, with an mIoU of 63.7% on the HCSV dataset; and thus could provide sufficient and accurate data for further protection and renewal in Chinese historic districts. Numéro de notice : A2022-410 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11060326 Date de publication en ligne : 28/05/2022 En ligne : https://doi.org/10.3390/ijgi11060326 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100760
in ISPRS International journal of geo-information > vol 11 n° 6 (June 2022) . - n° 326[article]Feature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images / Hanwen Xu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
[article]
Titre : Feature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images Type de document : Article/Communication Auteurs : Hanwen Xu, Auteur ; Xinming Tang, Auteur ; Bo Ai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4411915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] segmentation multi-échelle
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Very-high-resolution (VHR) remote sensing images contain various multiscale objects, such as large-scale buildings and small-scale cars. However, these multiscale objects cannot be considered simultaneously in the widely used backbones with a large downsampling factor (e.g., VGG-like and ResNet-like), resulting in the appearance of various context aggregation approaches, such as fusing low-level features and attention-based modules. To alleviate this problem caused by backbones with a large downsampling factor, we propose a feature-selection high-resolution network (FSHRNet) based on an observation: if the features maintain high resolution throughout the network, a high precision segmentation result can be obtained by only using a 1× 1 convolution layer with no need for complex context aggregation modules. Specifically, the backbone of FSHRNet is a multibranch structure similar to HRNet where the high-resolution branch is the principal line. Then, a lightweight dynamic weight module, named the feature-selection convolution (FSConv) layer, is presented to fuse multiresolution features, allowing adaptively feature selection based on the characteristic of objects. Finally, a specially designed 1× 1 convolution layer derived from hypersphere embedding is used to produce the segmentation result. Experiments with other widely used methods show that the proposed FSHRNet obtains competitive performance on the ISPRS Vaihingen dataset, the ISPRS Potsdam dataset, and the iSAID dataset. Numéro de notice : A2022-559 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3183144 En ligne : https://doi.org/10.1109/TGRS.2022.3183144 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101184
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 4411915[article]Graph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
[article]
Titre : Graph-based block-level urban change detection using Sentinel-2 time series Type de document : Article/Communication Auteurs : Nan Wang, Auteur ; Wei Li, Auteur ; Ran Tao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112993 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multivariée
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] détection de changement
[Termes IGN] espace vert
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (auteur) Remote sensing technology has been frequently used to obtain information on changes in urban land cover because of its vast spatial coverage and timeliness of observation. Block-level change detection with high temporal resolution image data provides fine detail of urban changes, is suitable for urban management, and has gradually received widespread attention. High-dimensional features are required to express the heterogeneous structure of the blocks. High-dimensional high-frequency time series, namely, multivariate time series, are formed by arranging high-dimensional features chronologically. Classic change detection methods treat multivariate time series as univariate time series one by one. Few studies have analyzed the change in a multivariate time series by considering all variables as an entirety. Therefore, a graph-based segmentation for multivariate time series algorithm (MTS-GS) is proposed in this paper. Specifically, 1) we construct a similarity matrix to explore the changing patterns of multivariate time series for seasonal change, trend change, abrupt change, and noise disturbance; 2) a multivariate time series graph is defined based on the changing patterns; and 3) the corresponding graph segmentation algorithm is proposed in the paper to detect the abrupt and trend changes under noise and seasonal disturbances. Sentinel-2 images of the rapidly developing third-tier city of Luoyang, Henan province, China, are adopted to validate the algorithm. The F1-score in the spatial domain is 84.1%; the producer's and the user's accuracy in the temporal dimension are 81.8% and 80.1%, respectively. Seven change types are defined and extracted, showing the development pattern and the efficiency of land use in the city. Furthermore, the proposed MTS-GS can be used for pixel-level change detection and performs well under various time intervals and cloud covers. Numéro de notice : A2022-399 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112993 Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112993 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100699
in Remote sensing of environment > vol 274 (June 2022) . - n° 112993[article]HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion / Kun Li in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
[article]
Titre : HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion Type de document : Article/Communication Auteurs : Kun Li, Auteur ; Wei Zhang, Auteur ; Dian Yu, Auteur ; Xin Tian, Auteur Année de publication : 2022 Article en page(s) : pp 30 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image floue
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] réseau neuronal profondRésumé : (Auteur) Traditional approaches mainly fuse a hyperspectral image (HSI) with a high-resolution multispectral image (MSI) to improve the spatial resolution of the HSI. However, such improvement in the spatial resolution of HSIs is still limited because the spatial resolution of MSIs remains low. To further improve the spatial resolution of HSIs, we propose HyperNet, a deep network for the fusion of HSI, MSI, and panchromatic image (PAN), which effectively injects the spatial details of an MSI and a PAN into an HSI while preserving the spectral information of the HSI. Thus, we design HyperNet on the basis of a uniform fusion strategy to solve the problem of complex fusion of three types of sources (i.e., HSI, MSI, and PAN). In particular, the spatial details of the MSI and the PAN are extracted by multiple specially designed multiscale-attention-enhance blocks in which multi-scale convolution is used to adaptively extract features from different reception fields, and two attention mechanisms are adopted to enhance the representation capability of features along the spectral and spatial dimensions, respectively. Through the capability of feature reuse and interaction in a specially designed dense-detail-insertion block, the previously extracted features are subsequently injected into the HSI according to the unidirectional feature propagation among the layers of dense connection. Finally, we construct an efficient loss function by integrating the multi-scale structural similarity index with the norm, which drives HyperNet to generate high-quality results with a good balance between spatial and spectral qualities. Extensive experiments on simulated and real data sets qualitatively and quantitatively demonstrate the superiority of HyperNet over other state-of-the-art methods. Numéro de notice : A2022-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.04.001 Date de publication en ligne : 07/04/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100461
in ISPRS Journal of photogrammetry and remote sensing > vol 188 (June 2022) . - pp 30 - 44[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022061 SL Revue Centre de documentation Revues en salle Disponible 081-2022063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Invariant structure representation for remote sensing object detection based on graph modeling / Zicong Zhu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)PermalinkLarge-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)PermalinkLine-based deep learning method for tree branch detection from digital images / Rodrigo L. S. Silva in International journal of applied Earth observation and geoinformation, vol 110 (June 2022)PermalinkPrecise crop classification of hyperspectral images using multi-branch feature fusion and dilation-based MLP / Haibin Wu in Remote sensing, vol 14 n° 11 (June-1 2022)PermalinkSummarizing large scale 3D mesh for urban navigation / Imeen Ben Salah in Robotics and autonomous systems, vol 152 (June 2022)PermalinkApplication oriented quality evaluation of Gaofen-7 optical stereo satellite imagery / Jiaojiao Tian in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)PermalinkCooperative image orientation considering dynamic objects / P. Trusheim in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)PermalinkEffect of label noise in semantic segmentation of high resolution aerial images and height data / Arabinda Maiti in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)PermalinkA new method to detect targets in hyperspectral images based on principal component analysis / Shahram Sharifi Hashjin in Geocarto international, vol 37 n° 9 ([15/05/2022])PermalinkResearch on automatic identification method of terraces on the Loess plateau based on deep transfer learning / Mingge Yu in Remote sensing, vol 14 n° 10 (May-2 2022)Permalink