Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > accentuation d'image
accentuation d'imageSynonyme(s)amélioration d'imageVoir aussi |
Documents disponibles dans cette catégorie (188)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network / Jingan Wu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network Type de document : Article/Communication Auteurs : Jingan Wu, Auteur ; Liupeng Lin, Auteur ; Chi Zhang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 16 - 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] approche hiérarchique
[Termes IGN] bande spectrale
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtre passe-haut
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSIRésumé : (Auteur) Earth observations from the Sentinel-2 mission have been extensively accepted in a variety of land services. The thirteen spectral bands of Sentinel-2, however, are collected at three spatial resolutions of 10/20/60 m, and such a difference brings difficulties to analyze multispectral imagery at a uniform resolution. To address this problem, we developed a hierarchical fusion network (HFN) to sharpen 20/60-m bands and generate Sentinel-2 all-band 10-m data. The deep learning architecture is used to learn the complex mapping between multi-resolution input and output data. Given the deficiency of previous studies in which the spatial information is inferred only from the fine-resolution bands, the proposed hierarchical fusion framework simultaneously leverages the self-similarity information from coarse-resolution bands and the spatial structure information from fine-resolution bands, to enhance the sharpening performance. Technically, the coarse-resolution bands are super-resolved by exploiting the information from themselves and then sharpened by fusing with the fine-resolution bands. Both 20-m and 60-m bands can be sharpened via the developed approach. Experimental results regarding visual comparison and quantitative assessment demonstrate that HFN outperforms the other benchmarking models, including pan-sharpening-based, model-based, geostatistical-based, and other deep-learning-based approaches, showing remarkable performance in reproducing explicit spatial details and maintaining original spectral features. Moreover, the developed model works more effectively than the other models over the heterogeneous landscape, which is usually considered a challenging application scenario. To sum up, the fusion model can sharpen Sentinel-2 20/60-m bands, and the created all-band 10-m data allows image analysis and geoscience applications to be authentically carried out at the 10-m resolution. Numéro de notice : A2023-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.017 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.017 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102392
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 16 - 31[article]A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) / Anchal Kumawat in The Visual Computer, vol 38 n° 11 (November 2022)
[article]
Titre : A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) Type de document : Article/Communication Auteurs : Anchal Kumawat, Auteur ; Sucheta Panda, Auteur Année de publication : 2022 Article en page(s) : pp 3681 - 3702 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] base de données d'images
[Termes IGN] détection de contours
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Wiener
[Termes IGN] Inférence floue
[Termes IGN] logique floue
[Termes IGN] méthode robuste
[Termes IGN] restauration d'image
[Termes IGN] seuillage
[Termes IGN] superposition d'imagesRésumé : (auteur) The problem of edge detection plays a crucial role in almost all research areas of image processing. If edges are detected accurately, one can detect the location of objects and the parameters such as shape and area can be measured more precisely. In order to overcome the above problem, a feature-based image registration (FBIR) method in combination with an improved version of canny with fuzzy logic is proposed for accurate detection of edges. The major contributions of the present work are summarized in three steps. In the first step, a restoration-based enhancement algorithm is proposed to get a fine image from a distorted noisy image. In the second step, two versions of input images are registered using a modified FBIR approach. In the third step, to overcome the drawback of canny edge detection algorithm, each step of the algorithm is modified. The output is then fed to a “fuzzy inference system”. The “fuzzy rule-based technique”, when applied to the problem of “edge detection”, is very “efficient” because the thickness of the edges can be controlled by simply changing “rules and output parameters”. The domain of the images under consideration is various well-known image databases such as Berkeley and USC-SIPI databases, whereas the proposed method is also suitable for other types of both indoor and outdoor images. The robustness of the proposed method is analysed, compared and evaluated with seven image assessment quality (IAQ) parameters. The performance of the proposed method is compared with some of the state-of-the-art edge detection methods in terms of the seven IAQ parameters. Numéro de notice : A2022-839 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02196-1 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02196-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102041
in The Visual Computer > vol 38 n° 11 (November 2022) . - pp 3681 - 3702[article]Correcting laser scanning intensity recorded in a cave environment for high-resolution lithological mapping: A case study of the Gouffre Georges, France / Michaela Nováková in Remote sensing of environment, vol 280 (October 2022)
[article]
Titre : Correcting laser scanning intensity recorded in a cave environment for high-resolution lithological mapping: A case study of the Gouffre Georges, France Type de document : Article/Communication Auteurs : Michaela Nováková, Auteur ; Michal Gallay, Auteur ; Jozef Šupinský, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113210 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] amélioration du contraste
[Termes IGN] Ariège (09)
[Termes IGN] cartographie géologique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage du bruit
[Termes IGN] grotte
[Termes IGN] intensité lumineuse
[Termes IGN] lithologie
[Termes IGN] roche
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) Active remote sensing by laser scanning (LiDAR) has markedly improved the mapping of a cave environment with an unprecedented level of accuracy and spatial detail. However, the use of laser intensity simultaneously recorded during the scanning of caves remains unexplored despite it having promising potential for lithological mapping as it has been demonstrated by many applications in open-sky conditions. The appropriate use of laser intensity requires calibration and corrections for influencing factors, which are different in caves as opposed to the above-ground environments. Our study presents an efficient and complex workflow to correct the recorded intensity, which takes into consideration the acquisition geometry, micromorphology of the cave surface, and the specific atmospheric influence previously neglected in terrestrial laser scanning. The applicability of the approach is demonstrated on terrestrial LiDAR data acquired in the Gouffre Georges, a cave located in the northern Pyrenees in France. The cave is unique for its geology and lithology allowing for observation, with a spectacular continuity without any vegetal cover, of the contact between marble and lherzolite rocks and tectonic structures that characterize such contact. The overall accuracy of rock surface classification based on the corrected laser intensity was over 84%. The presence of water or a wet surface introduced bias of the intensity values towards lower values complicating the material discrimination. Such conditions have to be considered in applications of the recorded laser intensity in mapping underground spaces. The presented method allows for putting geological observations in an absolute spatial reference frame, which is often very difficult in a cave environment. Thus, laser scanning of the cave geometry assigned with the corrected laser intensity is an invaluable tool to unravel the complexity of such a lithological environment. Numéro de notice : A2022-775 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113210 Date de publication en ligne : 10/08/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113210 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101807
in Remote sensing of environment > vol 280 (October 2022) . - n° 113210[article]Deep image deblurring: A survey / Kaihao Zhang in International journal of computer vision, vol 130 n° 9 (September 2022)
[article]
Titre : Deep image deblurring: A survey Type de document : Article/Communication Auteurs : Kaihao Zhang, Auteur ; Wenqi Ren, Auteur ; Wenhan Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2103 - 2130 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déconvolution
[Termes IGN] estimation par noyau
[Termes IGN] filtrage du bruit
[Termes IGN] image floue
[Termes IGN] qualité d'image
[Termes IGN] réseau antagoniste génératif
[Termes IGN] taxinomie
[Termes IGN] vision par ordinateurRésumé : (auteur) Image deblurring is a classic problem in low-level computer vision with the aim to recover a sharp image from a blurred input image. Advances in deep learning have led to significant progress in solving this problem, and a large number of deblurring networks have been proposed. This paper presents a comprehensive and timely survey of recently published deep-learning based image deblurring approaches, aiming to serve the community as a useful literature review. We start by discussing common causes of image blur, introduce benchmark datasets and performance metrics, and summarize different problem formulations. Next, we present a taxonomy of methods using convolutional neural networks (CNN) based on architecture, loss function, and application, offering a detailed review and comparison. In addition, we discuss some domain-specific deblurring applications including face images, text, and stereo image pairs. We conclude by discussing key challenges and future research directions. Numéro de notice : A2022-638 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-022-01633-5 Date de publication en ligne : 25/06/2022 En ligne : https://doi.org/10.1007/s11263-022-01633-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101444
in International journal of computer vision > vol 130 n° 9 (September 2022) . - pp 2103 - 2130[article]Adaptive edge preserving maps in Markov random fields for hyperspectral image classification / Chao Pan in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Adaptive edge preserving maps in Markov random fields for hyperspectral image classification Type de document : Article/Communication Auteurs : Chao Pan, Auteur ; Xiuping Jia, Auteur ; Jie Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8568 - 8583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation de contours
[Termes IGN] algorithme Graph-Cut
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classe d'objets
[Termes IGN] détection de contours
[Termes IGN] étiquette de classe
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] segmentation d'imageRésumé : (auteur) This article presents a novel adaptive edge preserving (aEP) scheme in Markov random fields (MRFs) for hyperspectral image (HSI) classification. MRF regularization usually suffered from over-smoothing at boundaries and insufficient refinement within class objects. This work divides and conquers this problem class-by-class, and integrates K ( K−1 )/2 ( K is the class number) aEP maps (aEPMs) in MRF model. Spatial label dependence measure (SLDM) is designed to estimate the interpixel label dependence for given spectral similarity measure. For each class pair, aEPM is optimized by maximizing the difference between intraclass and interclass SLDM. Then, aEPMs are integrated with multilevel logistic (MLL) model to regularize the raw pixelwise labeling obtained by spectral and spectral–spatial methods, respectively. The graph-cuts-based α β -swap algorithm is modified to optimize the designed energy function. Moreover, to evaluate the final refined results at edges and small details thoroughly, segmentation evaluation metrics are introduced. Experiments conducted on real HSI data denote the superiority of aEPMs in evaluation metrics and region consistency, especially in detail preservation. Numéro de notice : A2021-713 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3035642 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3035642 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98618
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8568 - 8583[article]Deep learning in denoising of micro-computed tomography images of rock samples / Mikhail Sidorenko in Computers & geosciences, vol 151 (June 2021)PermalinkUnsupervised multi-level feature extraction for improvement of hyperspectral classification / Qiaoqiao Sun in Remote sensing, vol 13 n° 8 (April-2 2021)PermalinkFuNet: A novel road extraction network with fusion of location data and remote sensing imagery / Kai Zhou in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)PermalinkA review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)PermalinkTélédétection hyperspectrale pour l’identification et la caractérisation de minéraux industriels / Ronan Rialland (2021)PermalinkA novel deep network and aggregation model for saliency detection / Ye Liang in The Visual Computer, vol 36 n° 9 (September 2020)PermalinkEdge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery / Xiaoyan Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)PermalinkPermalinkSentinel-2 sharpening using a reduced-rank method / Magnus Orn Ulfarsson in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)PermalinkConditional random field and deep feature learning for hyperspectral image classification / Fahim Irfan Alam in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)Permalink