Descripteur
Documents disponibles dans cette catégorie (8408)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Ajustement en bloc des données de stations totales et de récepteurs GNSS dans les études de déformation / Joël Van Cranenbroeck in XYZ, n° 171 (juin 2022)
[article]
Titre : Ajustement en bloc des données de stations totales et de récepteurs GNSS dans les études de déformation Type de document : Article/Communication Auteurs : Joël Van Cranenbroeck, Auteur ; Nicolas Van Cranenbroeck, Auteur Année de publication : 2022 Article en page(s) : pp 25 - 32 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Topographie
[Termes IGN] auscultation d'ouvrage
[Termes IGN] compensation par bloc
[Termes IGN] données GNSS
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle fonctionnel
[Termes IGN] modèle stochastique
[Termes IGN] surveillance d'ouvrage
[Termes IGN] tachéomètre électroniqueRésumé : (Auteur) En 1988, le département de la géodésie de l’Institut géographique national de Belgique décida de contribuer aux relevés topographiques des zones urbaines en proposant deux innovations originales. Les nouvelles bases de données SIG urbaines bénéficiaient à cette époque d’un grand engouement de la part des pouvoirs publics. En général, les méthodes photogrammétriques étaient plébiscitées pour leur efficacité en termes de réalisation, mais au niveau de la qualité de la restitution ainsi que de l’interprétation des objets spatiaux, on était loin des espérances. Il était donc toujours indispensable de recourir à la topographie, non seulement pour améliorer la précision de certaines zones, mais également pour la mise à jour de ces bases de données année après année. La topographie avait vu également son évolution technique s’améliorer avec les nouvelles stations totales et les systèmes de traitement des données sur base de codage des informations attributaires des points, lignes et surfaces. Numéro de notice : A2022-522 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101067
in XYZ > n° 171 (juin 2022) . - pp 25 - 32[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2022021 RAB Revue Centre de documentation En réserve L003 Disponible Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
[article]
Titre : Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure Type de document : Article/Communication Auteurs : Alejandro Rodríguez-Vivancos, Auteur ; José Antonio Manzanera, Auteur ; Susana Martín-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 447 - 465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de variance
[Termes IGN] Bootstrap (statistique)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur d'échantillon
[Termes IGN] Espagne
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pinus sylvestris
[Termes IGN] régression linéaire
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motionRésumé : (auteur) Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather all these questions in the same document, so that they serve as support for the planning of forest management. This study analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sampling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the variance of the stand structure variable. Numéro de notice : A2022-417 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10342-022-01447-7 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01447-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100780
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 447 - 465[article]Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data / Saeideh Sahebi Vayghan in Geocarto international, vol 37 n° 10 ([01/06/2022])
[article]
Titre : Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data Type de document : Article/Communication Auteurs : Saeideh Sahebi Vayghan, Auteur ; Mohammad Salmani, Auteur ; Neda Ghasemkhanic, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2967 - 2995 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme génétique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection d'arbres
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] image aérienne
[Termes IGN] image optique
[Termes IGN] Inférence floue
[Termes IGN] morphologie mathématiqueRésumé : (auteur) One of the most important considerations in urban environments is the extraction of urban objects, with a high automation level. This study aims to present a new method which uses aerial images and LiDAR data to extract buildings and trees footprint in urban areas. In this study, high-elevation objects were extracted from the LiDAR data using the developed scan labeling method, and then the classification methods of Neural Networks (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Genetic Based K-Means algorithm (GBKMs) were used to separate buildings and trees and with the purpose of evaluating their performance. The features used for the classification were extracted from aerial images and LiDAR data, and the training data for the classification were selected automatically. Mathematical morphology functions were also used to process the classification results. The results show that NN and the ANFIS are more effective than the genetic-based K-Means algorithm in detecting small and large buildings. Numéro de notice : A2022-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1844311 En ligne : https://doi.org/10.1080/10106049.2020.1844311 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101300
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2967 - 2995[article]Context-aware network for semantic segmentation toward large-scale point clouds in urban environments / Chun Liu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)
[article]
Titre : Context-aware network for semantic segmentation toward large-scale point clouds in urban environments Type de document : Article/Communication Auteurs : Chun Liu, Auteur ; Doudou Zeng, Auteur ; Akram Akbar, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5703915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] agrégation de détails
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] prise en compte du contexte
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) Point cloud semantic segmentation in urban scenes plays a vital role in intelligent city modeling, autonomous driving, and urban planning. Point cloud semantic segmentation based on deep learning methods has achieved significant improvement. However, it is also challenging for accurate semantic segmentation in large scenes due to complex elements, variety of scene classes, occlusions, and noise. Besides, most methods need to split the original point cloud into multiple blocks before processing and cannot directly deal with the point clouds on a large scale. We propose a novel context-aware network (CAN) that can directly deal with large-scale point clouds. In the proposed network, a local feature aggregation module (LFAM) is designed to preserve rich geometric details in the raw point cloud and reduce the information loss during feature extraction. Then, in combination with a global context aggregation module (GCAM), capture long-range dependencies to enhance the network feature representation and suppress the noise. Finally, a context-aware upsampling module (CAUM) is embedded into the proposed network to capture the global perception from a broad perspective. The ensemble of low-level and high-level features facilitates the effectiveness and efficiency of 3-D point cloud feature refinement. Comprehensive experiments were carried out on three large-scale point cloud datasets in both outdoor and indoor environments to evaluate the performance of the proposed network. The results show that the proposed method outperformed the state-of-the-art representative semantic segmentation networks, and the overall accuracy (OA) of Tongji-3D, Semantic3D, and Stanford large-scale 3-D indoor spaces (S3DIS) is 96.01%, 95.0%, and 88.55%, respectively. Numéro de notice : A2022-561 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3182776 Date de publication en ligne : 13/06/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3182776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101188
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 6 (June 2022) . - n° 5703915[article]Detecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
[article]
Titre : Detecting interchanges in road networks using a graph convolutional network approach Type de document : Article/Communication Auteurs : Min Yang, Auteur ; Chenjun Jiang, Auteur ; Xiongfeng Yan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1119 - 1139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse vectorielle
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] échangeur routier
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Detecting interchanges in road networks benefit many applications, such as vehicle navigation and map generalization. Traditional approaches use manually defined rules based on geometric, topological, or both properties, and thus can present challenges for structurally complex interchange. To overcome this drawback, we propose a graph-based deep learning approach for interchange detection. First, we model the road network as a graph in which the nodes represent road segments, and the edges represent their connections. The proposed approach computes the shape measures and contextual properties of individual road segments for features characterizing the associated nodes in the graph. Next, a semi-supervised approach uses these features and limited labeled interchanges to train a graph convolutional network that classifies these road segments into an interchange and non-interchange segments. Finally, an adaptive clustering approach groups the detected interchange segments into interchanges. Our experiment with the road networks of Beijing and Wuhan achieved a classification accuracy >95% at a label rate of 10%. Moreover, the interchange detection precision and recall were 79.6 and 75.7% on the Beijing dataset and 80.6 and 74.8% on the Wuhan dataset, respectively, which were 18.3–36.1 and 17.4–19.4% higher than those of the existing approaches based on characteristic node clustering. Numéro de notice : A2022-404 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2024195 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1080/13658816.2021.2024195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100716
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1119 - 1139[article]Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system / Eric Hyyppä in Science of remote sensing, vol 5 (June 2022)PermalinkÉvaluation de la qualité de modèles 3D issus de nuages de points / Tania Landes in XYZ, n° 171 (juin 2022)PermalinkExploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)PermalinkExtracting the urban landscape features of the historic district from street view images based on deep learning: A case study in the Beijing Core area / Siming Yin in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)PermalinkFeature-selection high-resolution network with hypersphere embedding for semantic segmentation of VHR remote sensing images / Hanwen Xu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)PermalinkGlacier mass loss in the Alaknanda basin, Garhwal Himalaya on a decadal scale / S.N. Remya in Geocarto international, vol 37 n° 10 ([01/06/2022])PermalinkGraph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)PermalinkHyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion / Kun Li in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)PermalinkInvariant structure representation for remote sensing object detection based on graph modeling / Zicong Zhu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 6 (June 2022)PermalinkLarge-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)Permalink