Descripteur
Documents disponibles dans cette catégorie (8408)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Line-based deep learning method for tree branch detection from digital images / Rodrigo L. S. Silva in International journal of applied Earth observation and geoinformation, vol 110 (June 2022)
[article]
Titre : Line-based deep learning method for tree branch detection from digital images Type de document : Article/Communication Auteurs : Rodrigo L. S. Silva, Auteur ; José Marcato Junior, Auteur ; Laisa Almeida, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102759 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] branche (arbre)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données qualitatives
[Termes IGN] estimation quantitative
[Termes IGN] image à haute résolution
[Termes IGN] ligne (géométrie)
[Termes IGN] transformation de HoughRésumé : (auteur) Preventive maintenance of power lines, including cutting and pruning of tree branches, is essential to avoid interruptions in the energy supply. Automatic methods can support this risky task and also reduce time-consuming. Here, we propose a method in which the orientation and the grasping positions of tree branches are estimated. The proposed method firstly predicts the straight line (representing the tree branch extension) based on a convolutional neural network (CNN). Secondly, a Hough transform is applied to estimate the direction and position of the line. Finally, we estimate the grip point as the pixel point with the highest probability of belonging to the line. We generated a dataset based on internet searches and annotated 1868 images considering challenging scenarios with different tree branch shapes, capture devices, and environmental conditions. Ten-fold cross-validation was adopted, considering 90% for training and 10% for testing. We also assessed the method under corruptions (gaussian and shot) with different severity levels. The experimental analysis showed the effectiveness of the proposed method reporting F1-score of 96.78%. Our method outperformed state-of-the-art Deep Hough Transform (DHT) and Fully Convolutional Line Parsing (F-Clip). Numéro de notice : A2022-550 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102759 Date de publication en ligne : 09/05/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102759 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101153
in International journal of applied Earth observation and geoinformation > vol 110 (June 2022) . - n° 102759[article]Physical modelling of Nanda Devi National Park, a natural world heritage site, from GIS data / Sanat Agrawal in Cartographica, vol 57 n° 2 (Summer 2022)
[article]
Titre : Physical modelling of Nanda Devi National Park, a natural world heritage site, from GIS data Type de document : Article/Communication Auteurs : Sanat Agrawal, Auteur ; Akshay Jain, Auteur Année de publication : 2022 Article en page(s) : pp 179 - 194 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] conservation du patrimoine
[Termes IGN] Himalaya
[Termes IGN] Inde
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle physique
[Termes IGN] patrimoine naturel
[Termes IGN] QGIS
[Termes IGN] site
[Termes IGN] surface du sol
[Termes IGN] système d'information géographiqueRésumé : (auteur) A methodology has been developed to create a physical model of the Nanda Devi National Park (NDNP), a Natural World Heritage Site (NWHS), by additive fabrication, to facilitate effective communication among the stakeholders for conservation management. The GIS data of a terrain give elevation values on the surface of a terrain only and lack 3D definition. The DEM ASCII XYZ file format is converted into a 3D STL file with walls and a base. Gaps and singularities in the data are taken care of. There is ample scope for aiding conservation management and restoration of NWHS sites using additive manufacturing (AM). A physical model of the NDNP was created using the methodology. The model holds very high value for long-term monitoring of the NWHS and the Himalayas. The physical model of the NDNP can serve as an effective medium of communication for conservation management. Physical models of the glacial basins or the Nanda Devi peak will provide further value. The research work can be extended to making models of the NDNP of larger sizes or by focusing on smaller region of the NDNP in consultation with the stakeholders. Numéro de notice : A2022-636 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3138/cart-2021-0025 Date de publication en ligne : 25/06/2022 En ligne : https://doi.org/10.3138/cart-2021-0025 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101426
in Cartographica > vol 57 n° 2 (Summer 2022) . - pp 179 - 194[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 031-2022021 RAB Revue Centre de documentation En réserve L003 Disponible Precise crop classification of hyperspectral images using multi-branch feature fusion and dilation-based MLP / Haibin Wu in Remote sensing, vol 14 n° 11 (June-1 2022)
[article]
Titre : Precise crop classification of hyperspectral images using multi-branch feature fusion and dilation-based MLP Type de document : Article/Communication Auteurs : Haibin Wu, Auteur ; Huaming Zhou, Auteur ; Aili Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2713 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cultures
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] Perceptron multicoucheRésumé : (auteur) The precise classification of crop types using hyperspectral remote sensing imaging is an essential application in the field of agriculture, and is of significance for crop yield estimation and growth monitoring. Among the deep learning methods, Convolutional Neural Networks (CNNs) are the premier model for hyperspectral image (HSI) classification for their outstanding locally contextual modeling capability, which facilitates spatial and spectral feature extraction. Nevertheless, the existing CNNs have a fixed shape and are limited to observing restricted receptive fields, constituting a simulation difficulty for modeling long-range dependencies. To tackle this challenge, this paper proposed two novel classification frameworks which are both built from multilayer perceptrons (MLPs). Firstly, we put forward a dilation-based MLP (DMLP) model, in which the dilated convolutional layer replaced the ordinary convolution of MLP, enlarging the receptive field without losing resolution and keeping the relative spatial position of pixels unchanged. Secondly, the paper proposes multi-branch residual blocks and DMLP concerning performance feature fusion after principal component analysis (PCA), called DMLPFFN, which makes full use of the multi-level feature information of the HSI. The proposed approaches are carried out on two widely used hyperspectral datasets: Salinas and KSC; and two practical crop hyperspectral datasets: WHU-Hi-LongKou and WHU-Hi-HanChuan. Experimental results show that the proposed methods outshine several state-of-the-art methods, outperforming CNN by 6.81%, 12.45%, 4.38% and 8.84%, and outperforming ResNet by 4.48%, 7.74%, 3.53% and 6.39% on the Salinas, KSC, WHU-Hi-LongKou and WHU-Hi-HanChuan datasets, respectively. As a result of this study, it was confirmed that the proposed methods offer remarkable performances for hyperspectral precise crop classification. Numéro de notice : A2022-539 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14112713 Date de publication en ligne : 05/06/2022 En ligne : https://doi.org/10.3390/rs14112713 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101102
in Remote sensing > vol 14 n° 11 (June-1 2022) . - n° 2713[article]Recent advances in forest insect pests and diseases monitoring using UAV-based data: A systematic review / André Duarte in Forests, vol 13 n° 6 (June 2022)
[article]
Titre : Recent advances in forest insect pests and diseases monitoring using UAV-based data: A systematic review Type de document : Article/Communication Auteurs : André Duarte, Auteur ; Nuno Borralho, Auteur ; Pedro Cabral, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 911 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image captée par drone
[Termes IGN] insecte nuisible
[Termes IGN] maladie parasitaire
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] santé des forêts
[Termes IGN] structure-from-motion
[Termes IGN] surveillance forestièreRésumé : (auteur) Unmanned aerial vehicles (UAVs) are platforms that have been increasingly used over the last decade to collect data for forest insect pest and disease (FIPD) monitoring. These machines provide flexibility, cost efficiency, and a high temporal and spatial resolution of remotely sensed data. The purpose of this review is to summarize recent contributions and to identify knowledge gaps in UAV remote sensing for FIPD monitoring. A systematic review was performed using the preferred reporting items for systematic reviews and meta-analysis (PRISMA) protocol. We reviewed the full text of 49 studies published between 2015 and 2021. The parameters examined were the taxonomic characteristics, the type of UAV and sensor, data collection and pre-processing, processing and analytical methods, and software used. We found that the number of papers on this topic has increased in recent years, with most being studies located in China and Europe. The main FIPDs studied were pine wilt disease (PWD) and bark beetles (BB) using UAV multirotor architectures. Among the sensor types, multispectral and red–green–blue (RGB) bands were preferred for the monitoring tasks. Regarding the analytical methods, random forest (RF) and deep learning (DL) classifiers were the most frequently applied in UAV imagery processing. This paper discusses the advantages and limitations associated with the use of UAVs and the processing methods for FIPDs, and research gaps and challenges are presented. Numéro de notice : A2022-483 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13060911 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.3390/f13060911 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100897
in Forests > vol 13 n° 6 (June 2022) . - n° 911[article]Summarizing large scale 3D mesh for urban navigation / Imeen Ben Salah in Robotics and autonomous systems, vol 152 (June 2022)
[article]
Titre : Summarizing large scale 3D mesh for urban navigation Type de document : Article/Communication Auteurs : Imeen Ben Salah, Auteur ; Sébastien Kramm, Auteur ; Cédric Demonceaux, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104037 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme ICP
[Termes IGN] carte en 3D
[Termes IGN] données lidar
[Termes IGN] entropie
[Termes IGN] image hémisphérique
[Termes IGN] image RVB
[Termes IGN] information sémantique
[Termes IGN] localisation basée vision
[Termes IGN] maillage
[Termes IGN] navigation autonome
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] précision radiométrique
[Termes IGN] profondeur
[Termes IGN] Rouen
[Termes IGN] saillance
[Termes IGN] zone urbaineRésumé : (auteur) Cameras have become increasingly common in vehicles, smartphones, and advanced driver assistance systems. The areas of application of these cameras in the world of intelligent transportation systems are becoming more and more varied: pedestrian detection, line crossing detection, navigation, …A major area of research currently focuses on mapping that is essential for localization and navigation. However, this step generates an important problem of memory management. Indeed, the memory space required to accommodate the map of a small city is measured in tens gigabytes. In addition, several providers today are competing to produce High-Definition (HD) maps. These maps offer a rich and detailed representation of the environment for highly accurate localization. However, they require a large storage capacity and high transmission and update costs. To overcome these problems, we propose a solution to summarize this type of map by reducing the size while maintaining the relevance of the data for navigation based on vision only. The summary consists in a set of spherical images augmented by depth and semantic information and allowing to keep the same level of visibility in every directions. These spheres are used as landmarks to offer guidance information to a distant agent. They then have to guarantee, at a lower cost, a good level of precision and speed during navigation. Some experiments on real data demonstrate the feasibility for obtaining a summarized map while maintaining a localization with interesting performances. Numéro de notice : A2022-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.robot.2022.104037 Date de publication en ligne : 03/02/2022 En ligne : https://doi.org/10.1016/j.robot.2022.104037 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100335
in Robotics and autonomous systems > vol 152 (June 2022) . - n° 104037[article]The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria / Alfred S. Alademomi in Applied geomatics, vol 14 n° 2 (June 2022)PermalinkThe promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning / Elie Morin in Ecological indicators, vol 139 (June 2022)PermalinkPermalinkTowards the automated large-scale reconstruction of past road networks from historical maps / Johannes H. Uhl in Computers, Environment and Urban Systems, vol 94 (June 2022)PermalinkTrue orthophoto generation based on unmanned aerial vehicle images using reconstructed edge points / Mojdeh Ebrahimikia in Photogrammetric record, vol 37 n° 178 (June 2022)PermalinkAn informal road detection neural network for societal impact in developing countries / Inger Fabris-Rotelli in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)PermalinkProjective multitexturing of current 3D city models and point clouds with many historical images / Maria Scarlleth Gomes de Castro in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)PermalinkApplication oriented quality evaluation of Gaofen-7 optical stereo satellite imagery / Jiaojiao Tian in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)PermalinkCalibration of a light hemispherical radiance field imaging system / Manchun Lei in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-1-2022 (2022 edition)PermalinkClassification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)Permalink