Descripteur
Documents disponibles dans cette catégorie (8408)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas / Hossein Pourazar in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas Type de document : Article/Communication Auteurs : Hossein Pourazar, Auteur ; Farhad Samadzadegan, Auteur ; Farzaneh Dadrass Javan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6695 - 6712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotoplan numérique
[Termes IGN] zone urbaineRésumé : (auteur) In this paper, a deep convolutional neural network (CNN) is developed to classify the Unmanned Aerial Vehicle (UAV) derived multispectral imagery and normalized digital surface model (DSM) data in urban areas. For this purpose, a multi-input deep CNN (MIDCNN) architecture is designed using 11 parallel CNNs; 10 deep CNNs to extract the features from all possible triple combinations of spectral bands as well as one deep CNN dedicated to the normalized DSM data. The proposed method is compared with the traditional single-input (SI) and double-input (DI) deep CNN designations and random forest (RF) classifier, and evaluated using two independent test datasets. The results indicate that increasing the CNN layers parallelly augmented the classifier’s generalization and reduced overfitting risk. The overall accuracy and kappa value of the proposed method are 95% and 0.93, respectively, for the first test dataset, and 96% and 0.94, respectively, for the second test data set. Numéro de notice : A2022-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959655 Date de publication en ligne : 04/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959655 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101741
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6695 - 6712[article]Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information / Ozlem Akar in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information Type de document : Article/Communication Auteurs : Ozlem Akar, Auteur ; Esra Tunc Gormus, Auteur Année de publication : 2022 Article en page(s) : pp 6643 - 6670 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de la végétation
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] texture d'image
[Termes IGN] transformation en ondelettes
[Termes IGN] TurquieRésumé : (auteur) Land use and Land cover (LULC) mapping is one of the most important application areas of remote sensing which requires both spectral and spatial resolutions in order to decrease the spectral ambiguity of different land cover types. Airborne hyperspectral images are among those data which perfectly suits to that kind of applications because of their high number of spectral bands and the ability to see small details on the field. As this technology has newly developed, most of the image processing methods are for the medium resolution sensors and they are not capable of dealing with high resolution images. Therefore, in this study a new framework is proposed to improve the classification accuracy of land use/cover mapping applications and to achieve a greater reliability in the process of mapping land use map using high resolution hyperspectral image data. In order to achieve it, spatial information is incorporated together with spectral information by exploiting feature extraction methods like Grey Level Co-occurrence Matrix (GLCM), Gabor and Morphological Attribute Profile (MAP) on dimensionally reduced image with highest accuracy. Then, machine learning algorithms like Random Forest (RF) and Support Vector Machine (SVM) are used to investigate the contribution of texture information in the classification of high resolution hyperspectral images. In addition to that, further analysis is conducted with object based RF classification to investigate the contribution of contextual information. Finally, overall accuracy, producer’s/user’s accuracy, the quantity and allocation based disagreements and location and quantity based kappa agreements are calculated together with McNemar tests for the accuracy assessment. According to our results, proposed framework which incorporates Gabor texture information and exploits Discrete Wavelet Transform based dimensionality reduction method increase the overall classification accuracy up to 9%. Amongst individual classes, Gabor features boosted classification accuracies of all the classes (soil, road, vegetation, building and shadow) to 7%, 6%, 6%, 8%, 9%, and 24% respectively with producer’s accuracy. Besides, 17% and 10% increase obtained in user’s accuracy with MAP (area) feature in classifying road and shadow classes respectively. Moreover, when the object based classification is conducted, it is seen that the OA of pixel based classification is increased further by 1.07%. An increase between 2% and 4% is achieved with producer’s accuracy in soil, vegetation and building classes and an increase between 1% and 3% is achieved by user’s accuracy in soil, road, vegetation and shadow classes. In the end, accurate LULC map is produced with object based RF classification of gabor features added airborne hyperspectral image which is dimensionally reduced with DWT method. Numéro de notice : A2022-729 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1944453 Date de publication en ligne : 09/11/2021 En ligne : https://doi.org/10.1080/10106049.2021.1944453 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101675
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6643 - 6670[article]Raster-based method for building selection in the multi-scale representation of two-dimensional maps / Yilang Shen in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Raster-based method for building selection in the multi-scale representation of two-dimensional maps Type de document : Article/Communication Auteurs : Yilang Shen, Auteur ; Tinghua Ai, Auteur ; Rong Zhao, Auteur Année de publication : 2022 Article en page(s) : pp 6494 - 6518 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] bâtiment
[Termes IGN] densité du bâti
[Termes IGN] distribution spatiale
[Termes IGN] données matricielles
[Termes IGN] représentation cartographique 2D
[Termes IGN] représentation multiple
[Termes IGN] segmentation
[Termes IGN] superpixel
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) In the multi-scale representation of maps, a selection operation is usually applied to reduce the number of map elements and improve legibility while maintaining the original distribution characteristics. During the past few decades, many methods for vector building selection have been developed; however, pixel-based methods are relatively lacking. In this paper, a multiple-strategy method for raster building selection is proposed. In this method, to preserve the distribution range, a new homogeneous linear spectral clustering (HLSC) superpixel segmentation method is developed for the relatively homogeneous spatial division of building groups. Then, to preserve the relative distribution density, multi-level spatial division is performed according to the local number of buildings. Finally, to preserve the local geometric, attributive and geographical characteristics, four selection strategies, namely, the minimum centroid distance, minimum boundary distance, maximum area and considering geographical element strategies, are designed to generate selection results. To evaluate the proposed method, dispersed buildings in a suburban area are utilized to perform selection tasks. The experimental results indicate that the proposed method can effectively select dispersed irregular buildings at different levels of detail while maintaining the original distribution range and relative distribution density. In addition, the use of multiple selection strategies considering various geometric, attributive and geographical characteristics provides multiple options for cartography. Numéro de notice : A2022-727 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1943007 Date de publication en ligne : 29/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1943007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101673
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6494 - 6518[article]Application of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Application of a graph convolutional network with visual and semantic features to classify urban scenes Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Shuai Jin, Auteur ; Zhanlong Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2009-2034 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de co-occurrence
[Termes IGN] OpenStreetMap
[Termes IGN] Pékin (Chine)
[Termes IGN] point d'intérêt
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] scène urbaineRésumé : (auteur) Urban scenes consist of visual and semantic features and exhibit spatial relationships among land-use types (e.g. industrial areas are far away from the residential zones). This study applied a graph convolutional network with neighborhood information (henceforth, named the neighbour supporting graph convolutional neural network), to learn spatial relationships for urban scene classification. Furthermore, a co-occurrence analysis with visual and semantic features proceeded to improve the accuracy of urban scene classification. We tested the proposed method with the fifth ring road of Beijing with an overall classification accuracy of 0.827 and a Kappa coefficient of 0.769. In comparison with other methods, such as support vector machine, random forest, and general graph convolutional network, the case study showed that the proposed method improved about 10% in urban scene classification. Numéro de notice : A2022-740 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2048834 Date de publication en ligne : 10/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2048834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101717
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 2009-2034[article]Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review / Sahar S. Matin in Geocarto international, Vol 37 n° 21 ([01/10/2022])
[article]
Titre : Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images : A systematic review Type de document : Article/Communication Auteurs : Sahar S. Matin, Auteur ; Biswajeet Pradhan, Auteur Année de publication : 2022 Article en page(s) : pp 6186 - 6212 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] cartographie thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation d'édifice
[Termes IGN] détection de changement
[Termes IGN] dommage matériel
[Termes IGN] données lidar
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] secours d'urgence
[Termes IGN] séismeRésumé : (auteur) Assessing the extent and level of building damages is crucial to support post-earthquake rescue and relief activities. There is a large body of literature proposing novel frameworks for automating earthquake-induced building damage mapping using high-resolution remote sensing images. Yet, its deployment in real-world scenarios is largely limited to the manual interpretation of images. Although manual interpretation is costly and labor-intensive, it is preferred over automatic and semi-automatic building damage mapping frameworks such as machine learning and deep learning because of its reliability. Therefore, this review paper explores various automatic and semi-automatic building damage mapping techniques with a quest to understand the pros and cons of different methodologies to narrow the gap between research and practice. Further, the research gaps and opportunities are identified for the future development of real-world scenarios earthquake-induced building damage mapping. This review can serve as a guideline for researchers, decision-makers, and practitioners in the emergency management service domain. Numéro de notice : A2022-719 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1933213 Date de publication en ligne : 07/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1933213 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101651
in Geocarto international > Vol 37 n° 21 [01/10/2022] . - pp 6186 - 6212[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022211 RAB Revue Centre de documentation En réserve L003 Disponible Comparison of layer-stacking and Dempster-Shafer theory-based methods using Sentinel-1 and Sentinel-2 data fusion in urban land cover mapping / Dang Hung Bui in Geo-spatial Information Science, vol 25 n° 3 (October 2022)PermalinkCorrecting laser scanning intensity recorded in a cave environment for high-resolution lithological mapping: A case study of the Gouffre Georges, France / Michaela Nováková in Remote sensing of environment, vol 280 (October 2022)PermalinkDeep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope / V.S. Martins in Remote sensing of environment, vol 280 (October 2022)PermalinkDetermination of local geometric geoid model for Kuwait / Ahmed Zaki in Journal of applied geodesy, vol 16 n° 4 (October 2022)PermalinkDSNUNet: An improved forest change detection network by combining Sentinel-1 and Sentinel-2 images / Jiawei Jiang in Remote sensing, vol 14 n° 19 (October-1 2022)PermalinkEvaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks / Abdelkrim Bouasria in Geo-spatial Information Science, vol 25 n° 3 (October 2022)PermalinkIncremental road network update method with trajectory data and UAV remote sensing imagery / Jianxin Qin in ISPRS International journal of geo-information, vol 11 n° 10 (October 2022)PermalinkInvestigation of recognition and classification of forest fires based on fusion color and textural features of images / Cong Li in Forests, vol 13 n° 10 (October 2022)PermalinkMonitoring spatiotemporal soil moisture changes in the subsurface of forest sites using electrical resistivity tomography (ERT) / Julian Fäth in Journal of Forestry Research, vol 33 n° 5 (October 2022)PermalinkMulti‑constellation GNSS interferometric reflectometry for the correction of long-term snow height retrieval on sloping topography / Wei Zhou in GPS solutions, vol 26 n° 4 (October 2022)Permalink