Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > restauration d'image
restauration d'imageSynonyme(s)Prétraitement d'imageVoir aussi |
Documents disponibles dans cette catégorie (608)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Deblurring low-light images with events / Chu Zhou in International journal of computer vision, vol 131 n° 5 (May 2023)
[article]
Titre : Deblurring low-light images with events Type de document : Article/Communication Auteurs : Chu Zhou, Auteur ; Minggui Teng, Auteur ; Jin Han, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1284 - 1298 Note générale : bilbiographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] caméra d'événement
[Termes IGN] correction d'image
[Termes IGN] filtrage du bruit
[Termes IGN] flou
[Termes IGN] image à basse résolution
[Termes IGN] image RVBRésumé : (auteur) Modern image-based deblurring methods usually show degenerate performance in low-light conditions since the images often contain most of the poorly visible dark regions and a few saturated bright regions, making the amount of effective features that can be extracted for deblurring limited. In contrast, event cameras can trigger events with a very high dynamic range and low latency, which hardly suffer from saturation and naturally encode dense temporal information about motion. However, in low-light conditions existing event-based deblurring methods would become less robust since the events triggered in dark regions are often severely contaminated by noise, leading to inaccurate reconstruction of the corresponding intensity values. Besides, since they directly adopt the event-based double integral model to perform pixel-wise reconstruction, they can only handle low-resolution grayscale active pixel sensor images provided by the DAVIS camera, which cannot meet the requirement of daily photography. In this paper, to apply events to deblurring low-light images robustly, we propose a unified two-stage framework along with a motion-aware neural network tailored to it, reconstructing the sharp image under the guidance of high-fidelity motion clues extracted from events. Besides, we build an RGB-DAVIS hybrid camera system to demonstrate that our method has the ability to deblur high-resolution RGB images due to the natural advantages of our two-stage framework. Experimental results show our method achieves state-of-the-art performance on both synthetic and real-world images. Numéro de notice : A2023-210 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-023-01754-5 Date de publication en ligne : 06/02/2023 En ligne : https://doi.org/10.1007/s11263-023-01754-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103062
in International journal of computer vision > vol 131 n° 5 (May 2023) . - pp 1284 - 1298[article]Consistency assessment of multi-date PlanetScope imagery for seagrass percent cover mapping in different seagrass meadows / Pramaditya Wicaksono in Geocarto international, vol 37 n° 27 ([20/12/2022])
[article]
Titre : Consistency assessment of multi-date PlanetScope imagery for seagrass percent cover mapping in different seagrass meadows Type de document : Article/Communication Auteurs : Pramaditya Wicaksono, Auteur ; Amanda Maishella, Auteur ; Wahyu Lazuardi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 15161 - 15186 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte thématique
[Termes IGN] classification par arbre de décision
[Termes IGN] classification pixellaire
[Termes IGN] correction d'image
[Termes IGN] filtrage du bruit
[Termes IGN] herbier marin
[Termes IGN] image PlanetScope
[Termes IGN] IndonésieRésumé : (auteur) Seagrass percent cover is a crucial and influential component of the biophysical characteristics of seagrass beds and is a key parameter for monitoring seagrass conditions. Therefore, the availability of seagrass percent cover maps greatly assists in sustainable coastal ecosystem management. This research aimed to assess the consistency of PlanetScope imagery for seagrass percent cover mapping using two study areas, namely Parang Island and Labuan Bajo, Indonesia. Assessing the consistency of the PlanetScope imagery performance in seagrass percent cover mapping helps understand the effects of variations in the image quality on its performance in monitoring changes in seagrass cover. Percent cover maps were derived using object-based image analysis (image segmentation and random forest) and pixel-based random forest algorithm. Accuracy assessment and consistency analysis were conducted on the basis of the following three approaches: overall accuracy consistency, agreement percentage and consistent pixel locations. Results show that PlanetScope images can fairly consistently map seagrass percent cover for a specific area across different dates. However, these images produced different levels of accuracy when used for mapping in seagrass meadows with various characteristics and benthic cover complexities. The mapping accuracy (OA–overall accuracy) and consistency (AP–agreement percentage) in patchy seagrass meadows (Parang Island, mean OA 18.4%–38.6%, AP 44.1%–70.3%) are different from those in continuous seagrass meadows (Labuan Bajo, OA 43.0%–56.2%, and AP 41.8%–55.8%). Moreover, PlanetScope images are consistent when used for mapping seagrasses with low and high percent covers but strive to obtain good consistency for medium percent cover due to the combination of seagrass and non-seagrass in a pixel. Furthermore, images with relatively similar image acquisition conditions (i.e., winds, aerosol optical depth, signal-to-noise ratio, and sunglint intensity) produce better consistency. The OA is related to the image acquisition conditions, whilst the AP is related to variation in these conditions. Nevertheless, PlanetScope is still the best high spatial resolution image that provides daily acquisition and is highly beneficial for various applications in tropical areas with persistent cloud coverage. Numéro de notice : A2022-932 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2096122 Date de publication en ligne : 06/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2096122 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102668
in Geocarto international > vol 37 n° 27 [20/12/2022] . - pp 15161 - 15186[article]A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) / Anchal Kumawat in The Visual Computer, vol 38 n° 11 (November 2022)
[article]
Titre : A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) Type de document : Article/Communication Auteurs : Anchal Kumawat, Auteur ; Sucheta Panda, Auteur Année de publication : 2022 Article en page(s) : pp 3681 - 3702 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] base de données d'images
[Termes IGN] détection de contours
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Wiener
[Termes IGN] Inférence floue
[Termes IGN] logique floue
[Termes IGN] méthode robuste
[Termes IGN] restauration d'image
[Termes IGN] seuillage
[Termes IGN] superposition d'imagesRésumé : (auteur) The problem of edge detection plays a crucial role in almost all research areas of image processing. If edges are detected accurately, one can detect the location of objects and the parameters such as shape and area can be measured more precisely. In order to overcome the above problem, a feature-based image registration (FBIR) method in combination with an improved version of canny with fuzzy logic is proposed for accurate detection of edges. The major contributions of the present work are summarized in three steps. In the first step, a restoration-based enhancement algorithm is proposed to get a fine image from a distorted noisy image. In the second step, two versions of input images are registered using a modified FBIR approach. In the third step, to overcome the drawback of canny edge detection algorithm, each step of the algorithm is modified. The output is then fed to a “fuzzy inference system”. The “fuzzy rule-based technique”, when applied to the problem of “edge detection”, is very “efficient” because the thickness of the edges can be controlled by simply changing “rules and output parameters”. The domain of the images under consideration is various well-known image databases such as Berkeley and USC-SIPI databases, whereas the proposed method is also suitable for other types of both indoor and outdoor images. The robustness of the proposed method is analysed, compared and evaluated with seven image assessment quality (IAQ) parameters. The performance of the proposed method is compared with some of the state-of-the-art edge detection methods in terms of the seven IAQ parameters. Numéro de notice : A2022-839 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02196-1 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02196-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102041
in The Visual Computer > vol 38 n° 11 (November 2022) . - pp 3681 - 3702[article]Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope / V.S. Martins in Remote sensing of environment, vol 280 (October 2022)
[article]
Titre : Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope Type de document : Article/Communication Auteurs : V.S. Martins, Auteur ; D.P. Roy, Auteur ; H. Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113203 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique (géographie politique)
[Termes IGN] apprentissage profond
[Termes IGN] carte thématique
[Termes IGN] cartographie automatique
[Termes IGN] correction radiométrique
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] image PlanetScope
[Termes IGN] incendie
[Termes IGN] précision de la classification
[Termes IGN] régression
[Termes IGN] savaneRésumé : (auteur) High spatial resolution commercial satellite data provide new opportunities for terrestrial monitoring. The recent availability of near-daily 3 m observations provided by the PlanetScope constellation enables mapping of small and spatially fragmented burns that are not detected at coarser spatial resolution. This study demonstrates, for the first time, the potential for automated PlanetScope 3 m burned area mapping. The PlanetScope sensors have no onboard calibration or short-wave infrared bands, and have variable overpass times, making them challenging to use for large area, automated, burned area mapping. To help overcome these issues, a U-Net deep learning algorithm was developed to classify burned areas from two-date Planetscope 3 m image pairs acquired at the same location. The deep learning approach, unlike conventional burned area mapping algorithms, is applied to image spatial subsets and not to single pixels and so incorporates spatial as well as spectral information. Deep learning requires large amounts of training data. Consequently, transfer learning was undertaken using pre-existing Landsat-8 derived burned area reference data to train the U-Net that was then refined with a smaller set of PlanetScope training data. Results across Africa considering 659 PlanetScope radiometrically normalized image pairs sensed one day apart in 2019 are presented. The U-Net was first trained with different numbers of randomly selected 256 × 256 30 m pixel patches extracted from 92 pre-existing Landsat-8 burned area reference data sets defined for 2014 and 2015. The U-Net trained with 300,000 Landsat patches provided about 13% 30 m burn omission and commission errors with respect to 65,000 independent 30 m evaluation patches. The U-Net was then refined by training on 5,000 256 × 256 3 m patches extracted from independently interpreted PlanetScope burned area reference data. Qualitatively, the refined U-Net was able to more precisely delineate 3 m burn boundaries, including the interiors of unburned areas, and better classify “faint” burned areas indicative of low combustion completeness and/or sparse burns. The refined U-Net 3 m classification accuracy was assessed with respect to 20 independently interpreted PlanetScope burned area reference data sets, composed of 339.4 million 3 m pixels, with low 12.29% commission and 12.09% omission errors. The dependency of the U-Net classification accuracy on the burned area proportion within 3 m pixel 256 × 256 patches was also examined, and patches Numéro de notice : A2022-774 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113203 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101802
in Remote sensing of environment > vol 280 (October 2022) . - n° 113203[article]Deflection of vertical effect on direct georeferencing in aerial mobile mapping systems: A case study in Sweden / Mohammad Bagherbandi in Photogrammetric record, vol 37 n° 179 (September 2022)
[article]
Titre : Deflection of vertical effect on direct georeferencing in aerial mobile mapping systems: A case study in Sweden Type de document : Article/Communication Auteurs : Mohammad Bagherbandi, Auteur ; Arash Jouybari, Auteur ; Faramarz Nilfouroushan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 285 - 305 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] couplage GNSS-INS
[Termes IGN] déviation de la verticale
[Termes IGN] Earth Gravity Model 2008
[Termes IGN] ellipsoïde de référence
[Termes IGN] géoréférencement direct
[Termes IGN] photogrammétrie aérienne
[Termes IGN] quasi-géoïde
[Termes IGN] Suède
[Termes IGN] système de numérisation mobileRésumé : (auteur) GNSS/INS applications are being developed, especially for direct georeferencing in airborne photogrammetry. Achieving accurately georeferenced products from the integration of GNSS and INS requires removing systematic errors in the mobile mapping systems. The INS sensor's uncertainty is decreasing; therefore, the influence of the deflection of verticals (DOV, the angle between the plumb line and normal to the ellipsoid) should be considered in the direct georeferencing. Otherwise, an error is imposed for calculating the exterior orientation parameters of the aerial images and aerial laser scanning. This study determines the DOV using the EGM2008 model and gravity data in Sweden. The impact of the DOVs on horizontal and vertical coordinates, considering different flight altitudes and camera field of view, is assessed. The results confirm that the calculated DOV components using the EGM2008 model are sufficiently accurate for aerial mapping system purposes except for mountainous areas because the topographic signal is not modelled correctly. Numéro de notice : A2022-937 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.1111/phor.12421 Date de publication en ligne : 25/07/2022 En ligne : https://doi.org/10.1111/phor.12421 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102683
in Photogrammetric record > vol 37 n° 179 (September 2022) . - pp 285 - 305[article]PKS: A photogrammetric key-frame selection method for visual-inertial systems built on ORB-SLAM3 / Arash Azimi in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)PermalinkFusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco bay area and Southern California / Huineng Yan in Journal of geodesy, vol 96 n° 7 (July 2022)Permalink3D browsing of wide-angle fisheye images under view-dependent perspective correction / Mingyi Huang in Photogrammetric record, vol 37 n° 178 (June 2022)PermalinkDirect photogrammetry with multispectral imagery for UAV-based snow depth estimation / Kathrin Maier in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)PermalinkHybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy / Norbert Haala in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)PermalinkEstimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image / Sinan Kaptan in Geocarto international, vol 37 n° 5 ([01/03/2022])PermalinkTraffic sign three-dimensional reconstruction based on point clouds and panoramic images / Minye Wang in Photogrammetric record, vol 37 n° 177 (March 2022)PermalinkImproving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns / Lâmân Lelégard (2022)PermalinkPreparation of the VENµS satellite data over Israel for the input into the GRASP data treatment algorithm / Maeve Blarel (2022)PermalinkStudying informativeness of satellite image texture for sea ice state retrieval using deep learning methods / Clément Fougerouse (2022)Permalink