Descripteur
Termes IGN > mathématiques > géométrie > figure géométrique > ligne (géométrie) > contour
contourSynonyme(s)Ligne de contour |
Documents disponibles dans cette catégorie (100)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic generation of outline-based representations of landmark buildings with distinctive shapes / Peng Ti in International journal of geographical information science IJGIS, vol 37 n° 4 (April 2023)
[article]
Titre : Automatic generation of outline-based representations of landmark buildings with distinctive shapes Type de document : Article/Communication Auteurs : Peng Ti, Auteur ; Tao Xiong, Auteur ; Yuhong Qiu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 864 - 884 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Bâti-3D
[Termes IGN] cartographie
[Termes IGN] contour
[Termes IGN] détection du bâti
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] raisonnement spatial
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation d'image
[Termes IGN] sémiologie graphique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Landmark buildings are salient features for spatial cognition on maps. Distinctive outlines are the major visual characteristics that separate landmark buildings from their surrounding environments. The automatic symbolization of landmark outlines facilitates recognition and map production. As users often recognize landmarks by the outlines of their façades from a street view, this study proposes an automatic method for automatically generating representations of the outlines of landmark buildings in four steps: (1) extract outlines from street-view photographs using GrabCut method, (2) vectorize the extracted building outlines, (3) simplify outline shapes, and (4) symbolize the simplified building outlines in three dimensions (3D). We used the proposed method to generate test data with symbolized outlines for eight buildings in a real-world environment for a wayfinding experiment in which the subjects used the building representations to identify landmark buildings and evaluated their perception of the generated maps. The subjects successfully recognized these buildings based on the symbolized outlines on a map, expressed satisfaction with the manually generated 3D symbols, and reported the same or similar ease of building recognition using 2D or 3D symbolized outlines. Numéro de notice : A2023-207 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2143503 Date de publication en ligne : 11/11/2022 En ligne : https://doi.org/10.1080/13658816.2022.2143503 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103109
in International journal of geographical information science IJGIS > vol 37 n° 4 (April 2023) . - pp 864 - 884[article]PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes Type de document : Article/Communication Auteurs : Weixiao Gao, Auteur ; Liangliang Nan, Auteur ; Bas Boom, Auteur ; Hugo Ledoux, Auteur Année de publication : 2023 Article en page(s) : pp 32 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de scène 3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] contour
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal de graphes
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation followed by semantic classification. The over-segmentation step generates an initial set of mesh segments that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we construct a graph that encodes the geometric and photometric features of the segments in its nodes and the multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at https://github.com/WeixiaoGao/PSSNet. Numéro de notice : A2023-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.020 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102399
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 32 - 44[article]Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach / Bowen Niu in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach Type de document : Article/Communication Auteurs : Bowen Niu, Auteur ; Quanlong Feng, Auteur ; Jianyu Yang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2164361 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] déchet
[Termes IGN] fusion de données
[Termes IGN] image à très haute résolution
[Termes IGN] Inde
[Termes IGN] Mexique
[Termes IGN] urbanisationRésumé : (auteur) The urbanization worldwide leads to the rapid increase of solid waste, posing a threat to environment and people’s wellbeing. However, it is challenging to detect solid waste sites with high accuracy due to complex landscape, and very few studies considered solid waste mapping across multi-cities and in large areas. To tackle this issue, this study proposes a novel deep learning model for solid waste mapping from very high resolution remote sensing imagery. By integrating a multi-scale dilated convolutional neural network (CNN) and a Swin-Transformer, both local and global features are aggregated. Experiments in China, India and Mexico indicate that the proposed model achieves high performance with an average accuracy of 90.62%. The novelty lies in the fusion of CNN and Transformer for solid waste mapping in multi-cities without the need for pixel-wise labelled data. Future work would consider more sophisticated methods such as semantic segmentation for fine-grained solid waste classification. Numéro de notice : A2023-109 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2164361 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2164361 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102407
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2164361[article]Improving image segmentation with boundary patch refinement / Xiaolin Hu in International journal of computer vision, vol 130 n° 11 (November 2022)
[article]
Titre : Improving image segmentation with boundary patch refinement Type de document : Article/Communication Auteurs : Xiaolin Hu, Auteur ; Chufeng Tang, Auteur ; Hang Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2571 - 2589 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] détection de contours
[Termes IGN] distance euclidienne
[Termes IGN] masque
[Termes IGN] segmentation d'image
[Termes IGN] segmentation fondée sur les contours
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Tremendous efforts have been made on image segmentation but the mask quality is still not satisfactory. The boundaries of predicted masks are usually imprecise due to the low spatial resolution of feature maps and the imbalance problem caused by the extremely low proportion of boundary pixels. To address these issues, we propose a conceptually simple yet effective post-processing refinement framework, termed BPR, to improve the boundary quality of the prediction of any image segmentation model. Following the idea of looking closer to segment boundaries better, we extract and refine a series of small boundary patches along the predicted boundaries. The refinement is accomplished by a boundary patch refinement network at the higher resolution. The trained BPR model can be easily transferred to refine the results of other models as well. Extensive experiments show that the proposed BPR framework yields significant improvements on the semantic, instance, and panoptic segmentation tasks over a variety of baselines on the Cityscapes dataset. Numéro de notice : A2022-741 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01662-0 Date de publication en ligne : 12/08/2022 En ligne : https://doi.org/10.1007/s11263-022-01662-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101719
in International journal of computer vision > vol 130 n° 11 (November 2022) . - pp 2571 - 2589[article]The iterative convolution–thresholding method (ICTM) for image segmentation / Dong Wang in Pattern recognition, vol 130 (October 2022)
[article]
Titre : The iterative convolution–thresholding method (ICTM) for image segmentation Type de document : Article/Communication Auteurs : Dong Wang, Auteur ; Xiaoping Wang, Auteur Année de publication : 2022 Article en page(s) : n° 108794 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] contour
[Termes IGN] convergence
[Termes IGN] filtrage numérique d'image
[Termes IGN] image à haute résolution
[Termes IGN] itération
[Termes IGN] segmentation d'image
[Termes IGN] seuillageRésumé : (auteur) Variational methods, which have been tremendously successful in image segmentation, work by minimizing a given objective functional. The objective functional usually consists of a fidelity term and a regularization term. Because objective functionals may vary from different types of images, developing an efficient, simple, and general numerical method to minimize them has become increasingly vital. However, many existing methods are model-based, converge relatively slowly, or involve complicated techniques. In this paper, we develop a novel iterative convolution–thresholding method (ICTM) that is simple, efficient, and applicable to a wide range of variational models for image segmentation. In ICTM, the interface between two different segment domains is implicitly represented by the characteristic functions of domains. The fidelity term is usually written into a linear functional of the characteristic functions, and the regularization term is approximated by a functional of characteristic functions in terms of heat kernel convolution. This allows us to design an iterative convolution–thresholding method to minimize the approximate energy. The method has the energy-decaying property, and thus the unconditional stability is theoretically guaranteed. Numerical experiments show that the method is simple, easy to implement, robust, and applicable to various image segmentation models. Numéro de notice : A2022-779 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2022.108794 Date de publication en ligne : 14/05/2022 En ligne : https://doi.org/10.1016/j.patcog.2022.108794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101857
in Pattern recognition > vol 130 (October 2022) . - n° 108794[article]3D building model simplification method considering both model mesh and building structure / Jiangfeng She in Transactions in GIS, vol 26 n° 3 (May 2022)PermalinkA cost-effective method for reconstructing city-building 3D models from sparse Lidar point clouds / Marek Kulawiak in Remote sensing, vol 14 n° 5 (March-1 2022)PermalinkPermalinkPermalinkComparative analysis for methods of building digital elevation models from topographic maps using geoinformation technologies / Vadim Belenok in Geodesy and cartography, vol 47 n° 4 (December 2021)PermalinkA method of extracting high-accuracy elevation control points from ICESat-2 altimetry data / Binbin Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 11 (November 2021)PermalinkMetaheuristics for the positioning of 3D objects based on image analysis of complementary 2D photographs / Arnaud Flori in Machine Vision and Applications, vol 32 n° 5 (September 2021)PermalinkQuantifying coherence between TDM90, SRTM90 and ASTER90 / Umut Gunes Sefercik in Geocarto international, vol 36 n° 15 ([15/08/2021])PermalinkA scalable method to construct compact road networks from GPS trajectories / Yuejun Guo in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)PermalinkPanoptic segmentation of satellite image time series with convolutional temporal attention networks / Vivien Sainte Fare Garnot (2021)PermalinkSupplementary material for: Panoptic segmentation of satellite image time series with convolutional temporal attention networks / Vivien Sainte Fare Garnot (2021)PermalinkPermalinkParsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)PermalinkChoosing an appropriate training set size when using existing data to train neural networks for land cover segmentation / Huan Ning in Annals of GIS, vol 26 n° 4 (October 2020)PermalinkNetwork-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)PermalinkAdaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation / Deliang Xiang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)PermalinkPermalinkDEM refinement by low vegetation removal based on the combination of full waveform data and progressive TIN densification / Hongchao Ma in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)PermalinkHistoric reconstruction of reservoir topography using contour line interpolation and structure from motion photogrammetry / Ana Casado in International journal of geographical information science IJGIS, vol 32 n° 11-12 (November - December 2018)PermalinkPermalink