Descripteur
Documents disponibles dans cette catégorie (1227)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Spatial mining of migration patterns from web demographics / T. Edwin Chow in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)
[article]
Titre : Spatial mining of migration patterns from web demographics Type de document : Article/Communication Auteurs : T. Edwin Chow, Auteur ; Ryan T. Schuermann, Auteur ; Anne H. Ngu, Auteur ; Khila R. Dahal, Auteur Année de publication : 2018 Article en page(s) : pp 1977 - 1998 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] arbre de décision
[Termes IGN] coût
[Termes IGN] données démographiques
[Termes IGN] exploration de données géographiques
[Termes IGN] migration humaine
[Termes IGN] qualité des données
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] Viet NamRésumé : (Auteur) Volunteered Geographic Information, social media, and data from Information and Communication Technology are emerging sources of big data that contribute to the development and understanding of the spatiotemporal distribution of human population. However, the inherent anonymity of these crowd-sourced or crowd-harvested data sources lack the socioeconomic and demographic attributes to examine and explain human mobility and spatiotemporal patterns. In this paper, we investigate an Internet-based demographic data source, personal microdata databases publicly accessible on the World Wide Web (hereafter web demographics), as potential sources of aspatial and spatiotemporal information regarding the landscape of human dynamics. The objectives of this paper are twofold: (1) to develop an analytical framework to identify mobile population from web demographics as an individual-level residential history data, and (2) to explore their geographic and demographic patterns of migration. Using web demographics of Vietnamese–Americans in Texas collected in 2010 as a case study, this paper (1) addresses entity resolution and identifies mobile population through the application of a Cost-Sensitive Alternative Decision Tree (CS-ADT) algorithm, (2) investigates migration pathways and clusters to include both short- and long-distance patterns, and (3) analyze the demographic characteristics of mobile population and the functional relationship with travel distance. By linking the physical space at the individual level, this unique methodology attempts to enhance the understanding of human movement at multiple spatial scales. Numéro de notice : A2018-309 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1470633 Date de publication en ligne : 08/05/2018 En ligne : https://doi.org/10.1080/13658816.2018.1470633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90466
in International journal of geographical information science IJGIS > vol 32 n° 9-10 (September - October 2018) . - pp 1977 - 1998[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2018051 RAB Revue Centre de documentation En réserve L003 Disponible 3-D deep learning approach for remote sensing image classification / Amina Ben Hamida in IEEE Transactions on geoscience and remote sensing, vol 56 n° 8 (August 2018)
[article]
Titre : 3-D deep learning approach for remote sensing image classification Type de document : Article/Communication Auteurs : Amina Ben Hamida, Auteur ; Alexandre Benoit, Auteur ; Patrick Lambert, Auteur ; Chokri Ben Amar, Auteur Année de publication : 2018 Article en page(s) : pp 4420 - 4434 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] image hyperspectrale
[Termes IGN] qualité géométrique (image)
[Termes IGN] valeur radiométriqueRésumé : (Auteur) Recently, a variety of approaches have been enriching the field of remote sensing (RS) image processing and analysis. Unfortunately, existing methods remain limited to the rich spatiospectral content of today's large data sets. It would seem intriguing to resort to deep learning (DL)-based approaches at this stage with regard to their ability to offer accurate semantic interpretation of the data. However, the specificity introduced by the coexistence of spectral and spatial content in the RS data sets widens the scope of the challenges presented to adapt DL methods to these contexts. Therefore, the aim of this paper is first to explore the performance of DL architectures for the RS hyperspectral data set classification and second to introduce a new 3-D DL approach that enables a joint spectral and spatial information process. A set of 3-D schemes is proposed and evaluated. Experimental results based on well-known hyperspectral data sets demonstrate that the proposed method is able to achieve a better classification rate than state-of-the-art methods with lower computational costs. Numéro de notice : A2018-470 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2818945 Date de publication en ligne : 20/04/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2818945 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91252
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 8 (August 2018) . - pp 4420 - 4434[article]Adaptive correlation filters with long-term and short-term memory for object tracking / Chao Ma in International journal of computer vision, vol 126 n° 8 (August 2018)
[article]
Titre : Adaptive correlation filters with long-term and short-term memory for object tracking Type de document : Article/Communication Auteurs : Chao Ma, Auteur ; Jia-Bin Huang, Auteur ; Xiaokang Yang, Auteur ; Ming-Hsuan Yang, Auteur Année de publication : 2018 Article en page(s) : pp 771 - 796 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] détection d'objet
[Termes IGN] filtre adaptatif
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] méthode robuste
[Termes IGN] poursuite de cibleRésumé : (Auteur) Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness. Numéro de notice : A2018-414 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-018-1076-4 Date de publication en ligne : 16/03/2018 En ligne : https://doi.org/10.1007/s11263-018-1076-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90897
in International journal of computer vision > vol 126 n° 8 (August 2018) . - pp 771 - 796[article]A deep learning approach to DTM extraction from imagery using rule-based training labels / Caroline M. Gevaert in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)
[article]
Titre : A deep learning approach to DTM extraction from imagery using rule-based training labels Type de document : Article/Communication Auteurs : Caroline M. Gevaert, Auteur ; Claudio Persello, Auteur ; M. George Vosselman, Auteur Année de publication : 2018 Article en page(s) : pp 106 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de règles
[Termes IGN] benchmark spatial
[Termes IGN] Dar-es-Salam (Tanzanie)
[Termes IGN] drone
[Termes IGN] échantillonnage d'image
[Termes IGN] extraction automatique
[Termes IGN] Kigali (Rwanda)
[Termes IGN] Lombardie
[Termes IGN] modèle numérique de terrain
[Termes IGN] photogrammétrie aérienne
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Existing algorithms for Digital Terrain Model (DTM) extraction still face difficulties due to data outliers and geometric ambiguities in the scene such as contiguous off-ground areas or sloped environments. We postulate that in such challenging cases, the radiometric information contained in aerial imagery may be leveraged to distinguish between ground and off-ground objects. We propose a method for DTM extraction from imagery which first applies morphological filters to the Digital Surface Model to obtain candidate ground and off-ground training samples. These samples are used to train a Fully Convolutional Network (FCN) in the second step, which can then be used to identify ground samples for the entire dataset. The proposed method harnesses the power of state-of-the-art deep learning methods, while showing how they can be adapted to the application of DTM extraction by (i) automatically selecting and labelling dataset-specific samples which can be used to train the network, and (ii) adapting the network architecture to consider a larger surface area without unnecessarily increasing the computational burden. The method is successfully tested on four datasets, indicating that the automatic labelling strategy can achieve an accuracy which is comparable to the use of manually labelled training samples. Furthermore, we demonstrate that the proposed method outperforms two reference DTM extraction algorithms in challenging areas. Numéro de notice : A2018-298 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.06.001 Date de publication en ligne : 15/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.06.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90410
in ISPRS Journal of photogrammetry and remote sensing > vol 142 (August 2018) . - pp 106 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification / Zhen Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 8 (August 2018)
[article]
Titre : A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification Type de document : Article/Communication Auteurs : Zhen Wang, Auteur ; Liqiang Zhang, Auteur ; Liang Zhang, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 4594 - 4604 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire
[Termes IGN] classification par réseau neuronal
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] méthode robuste
[Termes IGN] Perceptron multicouche
[Termes IGN] pondération
[Termes IGN] précision de la classification
[Termes IGN] scène urbaine
[Termes IGN] semis de pointsMots-clés libres : deep neural network with spatial pooling (DNNSP) Résumé : (Auteur) The large number of object categories and many overlapping or closely neighboring objects in large-scale urban scenes pose great challenges in point cloud classification. Most works in deep learning have achieved a great success on regular input representations, but they are hard to be directly applied to classify point clouds due to the irregularity and inhomogeneity of the data. In this paper, a deep neural network with spatial pooling (DNNSP) is proposed to classify large-scale point clouds without rasterization. The DNNSP first obtains the point-based feature descriptors of all points in each point cluster. The distance minimum spanning tree-based pooling is then applied in the point feature representation to describe the spatial information among the points in the point clusters. The max pooling is next employed to aggregate the point-based features into the cluster-based features. To assure the DNNSP is invariant to the point permutation and sizes of the point clusters, the point-based feature representation is determined by the multilayer perception (MLP) and the weight sharing for each point is retained, which means that the weight of each point in the same layer is the same. In this way, the DNNSP can learn the features of points scaled from the entire regions to the centers of the point clusters, which makes the point cluster-based feature representations robust and discriminative. Finally, the cluster-based features are input to another MLP for point cloud classification. We have evaluated qualitatively and quantitatively the proposed method using several airborne laser scanning and terrestrial laser scanning point cloud data sets. The experimental results have demonstrated the effectiveness of our method in improving classification accuracy. Numéro de notice : A2018-471 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2829625 Date de publication en ligne : 22/05/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2829625 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91253
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 8 (August 2018) . - pp 4594 - 4604[article]Improving the quality of cartographic colour reproduction using the self-organizing map method / Mingguang Wu in Cartographic journal (the), Vol 55 n° 3 (August 2018)PermalinkSpectral-spatial classification of hyperspectral images using wavelet transform and hidden Markov random fields / Elham Kordi Ghasrodashti in Geocarto international, vol 33 n° 8 (August 2018)PermalinkCombining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment / Bernd Resch in Cartography and Geographic Information Science, Vol 45 n° 4 (July 2018)PermalinkEvolutionary approach for detection of buried remains using hyperspectral images / Leon Dozal in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 7 (juillet 2018)PermalinkExploring geo-tagged photos for land cover validation with deep learning / Hanfa Xing in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)PermalinkExtracting leaf area index using viewing geometry effects : A new perspective on high-resolution unmanned aerial system photography / Lukas Roth in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)PermalinkHierarchical cellular automata for visual saliency / Yao Qin in International journal of computer vision, vol 126 n° 7 (July 2018)PermalinkA light and faster regional convolutional neural network for object detection in optical remote sensing images / Peng Ding in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)PermalinkMining and visual exploration of closed contiguous sequential patterns in trajectories / Can Yang in International journal of geographical information science IJGIS, vol 32 n° 7-8 (July - August 2018)PermalinkTesting time-geographic density estimation for home range analysis using an agent-based model of animal movement / Joni A. Downs in International journal of geographical information science IJGIS, vol 32 n° 7-8 (July - August 2018)PermalinkAdvancing New Testament interpretation through spatio‐temporal analysis: Demonstrated by case studies / Vincent Van Altena in Transactions in GIS, vol 22 n° 3 (June 2018)PermalinkApplication of deep learning for object detection / Ajeet Ram Pathak in Procedia Computer Science, vol 132 (2018)PermalinkClassification à très large échelle d’images satellites à très haute résolution spatiale par réseaux de neurones convolutifs / Tristan Postadjian in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)PermalinkForeword to the theme issue on geospatial computer vision / Jan Dirk Wegner in ISPRS Journal of photogrammetry and remote sensing, vol 140 (June 2018)PermalinkFusion tardive d’images SPOT 6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)PermalinkGeometric reasoning with uncertain polygonal faces / Jochen Meidow in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 6 (juin 2018)PermalinkPré-estimation et analyse de la précision pour la cartographie par drone / Laurent Valentin Jospin in XYZ, n° 155 (juin - août 2018)PermalinkA simple line clustering method for spatial analysis with origin-destination data and its application to bike-sharing movement data / Biao He in ISPRS International journal of geo-information, vol 7 n° 6 (June 2018)PermalinkThe map as knowledge base / Dalia E. Varanka in International journal of cartography, vol 4 n° 2 (June 2018)PermalinkA voxel- and graph-based strategy for segmenting man-made infrastructures using perceptual grouping laws: comparison and evaluation / Yusheng Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 6 (juin 2018)Permalink