Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physiologique > vision > vision binoculaire > vision stéréoscopique
vision stéréoscopiqueSynonyme(s)vision en relief |
Documents disponibles dans cette catégorie (62)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Adaptation d'un algorithme SLAM pour la vision panoramique multi-expositions dans des scènes à haute gamme dynamique / Eva Goichon (2022)
Titre : Adaptation d'un algorithme SLAM pour la vision panoramique multi-expositions dans des scènes à haute gamme dynamique Type de document : Mémoire Auteurs : Eva Goichon, Auteur Editeur : Strasbourg : Institut National des Sciences Appliquées INSA Strasbourg Année de publication : 2022 Importance : 52 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire de soutenance de Diplôme d’Ingénieur INSALangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] image panoramique
[Termes IGN] vision monoculaire
[Termes IGN] vision par ordinateur
[Termes IGN] vision stéréoscopiqueIndex. décimale : INSAS Mémoires d'ingénieur de l'INSA Strasbourg - Topographie, ex ENSAIS Résumé : (auteur) La Localisation et Cartographie Simultanées basée vision (SLAM) en robotique est bien établie mais trouve encore ses limites en environnement à grande gamme dynamique où les images acquises souffrent de sur- et sous-expositions. Ce travail s’appuie sur l’utilisation de caméras originales capables d’acquérir plusieurs expositions différentes simultanément en une image panoramique multiple pour limiter les saturations. Il en adapte les images et le modèle de projection en vue d’exploiter ces caméras dans le SLAM multi-caméra MCPTAM, initialement conçu pour des données différentes. Ce travail a permis de mettre en lumière les difficultés de MCPTAM dans les virages mais donne de meilleurs résultats avec des expositions multiples. Note de contenu : 1- Introduction
2- State-of-the-art
3- Description of methods used
4- Results
ConclusionNuméro de notice : 24092 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire ingénieur INSAS Organisme de stage : JRL (AIST-CNRS) / IRISA Rennes En ligne : http://eprints2.insa-strasbourg.fr/4672/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102562
Titre : Deep-learning for 3D reconstruction Type de document : Thèse/HDR Auteurs : Fabio Tosi, Auteur Editeur : Bologne [Italie] : Université de Bologne Année de publication : 2021 Format : 21 x 30 cm Note générale : bibliographie
PhD Thesis in Computer Science and EngineeringLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] carte de confiance
[Termes IGN] compréhension de l'image
[Termes IGN] profondeur
[Termes IGN] reconstruction 3D
[Termes IGN] réseau antagoniste génératif
[Termes IGN] vision stéréoscopiqueRésumé : (auteur) Depth perception is paramount for many computer vision applications such as autonomous driving and augmented reality. Despite active sensors (e.g., LiDAR, Time-of-Flight, struc- tured light) are quite diffused, they have severe shortcomings that could be potentially addressed by image-based sensors. Concerning this latter category, deep learning has enabled ground-breaking results in tackling well-known issues affecting the accuracy of systems inferring depth from a single or multiple images in specific circumstances (e.g., low textured regions, depth discontinuities, etc.), but also introduced additional concerns about the domain shift occurring between training and target environments and the need of proper ground truth depth labels to be used as the training signals in network learning. Moreover, despite the copious literature concerning confidence estimation for depth from a stereo setup, inferring depth uncertainty when dealing with deep networks is still a major challenge and almost unexplored research area, especially when dealing with a monocular setup. Finally, computational complexity is another crucial aspect to be considered when targeting most practical applications and hence is desirable not only to infer reliable depth data but do so in real-time and with low power requirements even on standard embedded devices or smartphones. Therefore, focusing on stereo and monocular setups, this thesis tackles major issues affecting methodologies to infer depth from images and aims at developing accurate and efficient frameworks for accurate 3D reconstruction on challenging environments. Note de contenu : Introduction
1- Related work
2- Datasets
3- Evaluation protocols
4- Confidence measures in a machine learning world
5- Efficient confidence measures for embedded stereo
6- Even more confident predictions with deep machine-learning
7- Beyond local reasoning for stereo confidence estimation with deep learning
8- Good cues to learn from scratch a confidence measure for passive depth sensors
9- Confidence estimation for ToF and stereo sensors and its application to depth data fusion
10- Learning confidence measures in the wild
11- Self-adapting confidence estimation for stereo
12- Leveraging confident points for accurate depth refinement on embedded systems
13- SMD-Nets: Stereo Mixture Density Networks
14- Real-time self-adaptive deep stereo
15- Guided stereo matching
16- Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation
17- Learning end-to-end scene flow by distilling single tasks knowledge
18- Learning monocular depth estimation with unsupervised trinocular assumptions
19- Geometry meets semantics for semi-supervised monocular depth estimation
20- Generative Adversarial Networks for unsupervised monocular depth prediction
21- Learning monocular depth estimation infusing traditional stereo knowled
22- Towards real-time unsupervised monocular depth estimation on CPU
23- Enabling energy-efficient unsupervised monocular depth estimation on ARMv7-based platforms
24- Distilled semantics for comprehensive scene understanding from videos
25- On the uncertainty of self-supervised monocular depth estimation
ConclusionNuméro de notice : 28596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : Thèse de Doctorat : Computer Science and Engineering : Bologne : 2021 DOI : 10.48676/unibo/amsdottorato/9816 En ligne : http://amsdottorato.unibo.it/9816/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99325 Refractive two-view reconstruction for underwater 3D vision / François Chadebecq in International journal of computer vision, vol 128 n° 5 (May 2020)
[article]
Titre : Refractive two-view reconstruction for underwater 3D vision Type de document : Article/Communication Auteurs : François Chadebecq, Auteur ; Francisco Vasconcelos, Auteur ; René Lacher, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1101 - 1117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] correction d'image
[Termes IGN] estimation de pose
[Termes IGN] étalonnage d'instrument
[Termes IGN] image sous-marine
[Termes IGN] reconstruction 3D
[Termes IGN] réfraction de l'eau
[Termes IGN] structure-from-motion
[Termes IGN] temps de pose
[Termes IGN] vision stéréoscopiqueRésumé : (auteur) Recovering 3D geometry from cameras in underwater applications involves the Refractive Structure-from-Motion problem where the non-linear distortion of light induced by a change of medium density invalidates the single viewpoint assumption. The pinhole-plus-distortion camera projection model suffers from a systematic geometric bias since refractive distortion depends on object distance. This leads to inaccurate camera pose and 3D shape estimation. To account for refraction, it is possible to use the axial camera model or to explicitly consider one or multiple parallel refractive interfaces whose orientations and positions with respect to the camera can be calibrated. Although it has been demonstrated that the refractive camera model is well-suited for underwater imaging, Refractive Structure-from-Motion remains particularly difficult to use in practice when considering the seldom studied case of a camera with a flat refractive interface. Our method applies to the case of underwater imaging systems whose entrance lens is in direct contact with the external medium. By adopting the refractive camera model, we provide a succinct derivation and expression for the refractive fundamental matrix and use this as the basis for a novel two-view reconstruction method for underwater imaging. For validation we use synthetic data to show the numerical properties of our method and we provide results on real data to demonstrate its practical application within laboratory settings and for medical applications in fluid-immersed endoscopy. We demonstrate our approach outperforms classic two-view Structure-from-Motion method relying on the pinhole-plus-distortion camera model. Numéro de notice : A2020-508 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11263-019-01218-9 Date de publication en ligne : 18/11/2019 En ligne : https://doi.org/10.1007/s11263-019-01218-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96972
in International journal of computer vision > vol 128 n° 5 (May 2020) . - pp 1101 - 1117[article]
Titre : Learning stereo reconstruction with deep neural networks Type de document : Thèse/HDR Auteurs : Stepan Tulyakov, Auteur ; François Fleuret, Directeur de thèse ; Anton Ivanov, Directeur de thèse Editeur : Lausanne : Ecole Polytechnique Fédérale de Lausanne EPFL Année de publication : 2020 Importance : 139 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée à l'Ecole Polytechnique Fédérale de Lausanne pour l’obtention du grade de Docteur ès SciencesLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification semi-dirigée
[Termes IGN] contrainte géométrique
[Termes IGN] couple stéréoscopique
[Termes IGN] entropie
[Termes IGN] estimateur
[Termes IGN] étalonnage géométrique
[Termes IGN] modèle stéréoscopique
[Termes IGN] profondeur
[Termes IGN] réalité de terrain
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'image
[Termes IGN] vision par ordinateur
[Termes IGN] vision stéréoscopiqueRésumé : (auteur) Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images of the scene, acquired from different viewpoints. It has been investigated for decades and many successful methods were developed. The main drawback of these methods, is that they typically utilize a single depth cue, such as parallax, defocus blur or shading, and thus are not as robust as a human visual system that simultaneously relies on a range of monocular and binocular cues. This is mainly because it is hard to manually design a model, accounting for multiple depth cues. In this work, we address this problem by focusing on deep learning-based stereo methods that can discover a model for multiple depth cues directly from training data with ground truth depth. The complexity of deep learning-based methods, however, requires very large training sets with ground truth depth, which is often hard or costly to collect. Furthermore, even when training data is available it is often contaminated with noise, which reduces the effectiveness of supervised learning. In this work, in Chapter 3 we show that it is possible to alleviate this problem by using weakly supervised learning, that utilizes geometric constraints of the problem instead of ground truth depth. Besides the large training set requirement, deep stereo methods are not as application-friendlyas traditional methods. They have a large memory footprint and their disparity range is fixed at training time. For some applications, such as satellite stereo i magery, these are serious problems since satellite images are very large, often reaching tens of megapixels, and have a variable baseline, depending on a time difference between stereo images acquisition. In this work, in Chapter 4 we address these problems by introducing a novel network architecture with a bottleneck, capable of processing large images and utilizing more context, and an estimator that makes the network less sensitive to stereo matching ambiguities and applicable to any disparity range without re-training. Because deep learning-based methods discover depth cues directly from training data, they can be adapted to new data modalities without large modifications. In this work, in Chapter 5 we show that our method, developed for a conventional frame-based camera, can be used with a novel event-based camera, that has a higher dynamic range, smaller latency, and low power consumption. Instead of sampling intensity of all pixels with a fixed frequency, this camera asynchronously reports events of significant pixel intensity changes. To adopt our method to this new data modality, we propose a novel event sequence embedding module, that firstly aggregates information locally, across time, using a novel fully-connected layer for an irregularly sampled continuous domain, and then across discrete spatial domain. One interesting application of stereo is a reconstruction of a planet’s surface topography from satellite stereo images. In this work, in Chapter 6 we describe a geometric calibration method, as well as mosaicing and stereo reconstruction tools that we developed in the framework of the doctoral project for Color and Stereo Surface Imaging System onboard of ESA’s Trace Gas Orbiter, orbiting Mars. For the calibration, we propose a novel method, relying on starfield images because large focal lengths and complex optical distortion of the instrument forbid using standard methods. Scientific and practical results of this work are widely used by a scientific community. Note de contenu : 1- Introduction
2- Background
3- Weakly supervised learning of deep patch-matching cost
4- Applications-friendly deep stereo
5- Dense deep event-based stereo
6- Calibration of a satellite stereo system
7- ConclusionsNuméro de notice : 25795 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : Thèse de Doctorat : Sciences : Lausanne : 2020 En ligne : https://infoscience.epfl.ch/record/275342?ln=fr Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95025 Context pyramidal network for stereo matching regularized by disparity gradients / Junhua Kang in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Context pyramidal network for stereo matching regularized by disparity gradients Type de document : Article/Communication Auteurs : Junhua Kang, Auteur ; Lin Chen, Auteur ; Fei Deng, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 201 - 215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] appariement de formes
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] gradient
[Termes IGN] vision par ordinateur
[Termes IGN] vision stéréoscopiqueRésumé : (Auteur) Also after many years of research, stereo matching remains to be a challenging task in photogrammetry and computer vision. Recent work has achieved great progress by formulating dense stereo matching as a pixel-wise learning task to be resolved with a deep convolutional neural network (CNN). However, most estimation methods, including traditional and deep learning approaches, still have difficulty to handle real-world challenging scenarios, especially those including large depth discontinuity and low texture areas.
To tackle these problems, we investigate a recently proposed end-to-end disparity learning network, DispNet (Mayer et al., 2015), and improve it to yield better results in these problematic areas. The improvements consist of three major contributions. First, we use dilated convolutions to develop a context pyramidal feature extraction module. A dilated convolution expands the receptive field of view when extracting features, and aggregates more contextual information, which allows our network to be more robust in weakly textured areas. Second, we construct the matching cost volume with patch-based correlation to handle larger disparities. We also modify the basic encoder-decoder module to regress detailed disparity images with full resolution. Third, instead of using post-processing steps to impose smoothness in the presence of depth discontinuities, we incorporate disparity gradient information as a gradient regularizer into the loss function to preserve local structure details in large depth discontinuity areas.
We evaluate our model in terms of end-point-error on several challenging stereo datasets including Scene Flow, Sintel and KITTI. Experimental results demonstrate that our model decreases the estimation error compared with DispNet on most datasets (e.g. we obtain an improvement of 46% on Sintel) and estimates better structure-preserving disparity maps. Moreover, our proposal also achieves competitive performance compared to other methods.Numéro de notice : A2019-496 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.012 Date de publication en ligne : 27/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.012 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93729
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 201 - 215[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Towards visual urban scene understanding for autonomous vehicle path tracking using GPS positioning data / Citlalli Gamez Serna (2019)PermalinkVision stéréoscopique temps-réel pour la navigation autonome d'un robot en environnement dynamique / Maxime Derome (2017)PermalinkImage matching using SIFT features and relaxation labeling technique—A constraint initializing method for dense stereo matching / Jyoti Joglekar in IEEE Transactions on geoscience and remote sensing, vol 52 n° 9 Tome 1 (September 2014)PermalinkPermalinkDéveloppement de systèmes de mesure basés sur la stéréovision dédiés aux feux en propagation / L. Rossi in Revue Française de Photogrammétrie et de Télédétection, n° 201 (Janvier 2013)PermalinkMise en oeuvre d'une chaîne de calcul de production de nuages de points denses / Emmanuel Habets (2012)PermalinkExperimentation of structured light and stereo vision for underwater 3D reconstruction / F. Bruno in ISPRS Journal of photogrammetry and remote sensing, vol 66 n° 4 (July - August 2011)PermalinkForum de photogrammétrie / Anonyme in Géomatique expert, n° 61 (01/03/2008)PermalinkVisual thinking for design / Colin Ware (2008)PermalinkPermalink