Descripteur
Termes IGN > informatique > langage de programmation
langage de programmationSynonyme(s)langage informatiqueVoir aussi |
Documents disponibles dans cette catégorie (666)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Implementation of a service solution to automate the storage and retrieval of satellite data used by Geotree / Maeve Blarel (2023)
Titre : Implementation of a service solution to automate the storage and retrieval of satellite data used by Geotree : Scaling and refining Earth Observation data processing for nature-based solutions development Type de document : Mémoire Auteurs : Maeve Blarel, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2023 Importance : 97 p. Format : 21 x 30 cm Note générale : bibliographie
Rapport de fin d'étude, cycle des Ingénieurs diplômés de l’ENSG 3ème année, Spécialité TSILangues : Anglais (eng) Descripteur : [Termes IGN] carbone
[Termes IGN] gaz à effet de serre
[Termes IGN] Python (langage de programmation)
[Termes IGN] système de gestion de base de données
[Termes IGN] télédétectionMots-clés libres : Cloud CO2 Docker Gaz à Effet de Serre Git Marché du carbone Python Serviced’API SGBD Standard STAC Télédétection Traitement des données Index. décimale : MTSI Mémoires du Master Technologies des Systèmes d'Information Résumé : Carried out at Geotree, in Austria, and in collaboration with Mantle Labs, this Final Year Project (FWP) is part of the problem of scaling up and perfecting the processing of Earth observation data for the development of nature-based solutions. Geotree and MantleLabs are working together on Earth monitoring projects as part of the carbon market. With its extensive expertise in remote sensing, Geotree deploys a digital twin of the Earth that unlocks nature-based solutions.For its part, Mantle Labs is contributing its extensive experience in the use of satellite data, with the help of an international team. Through its cutting-edge tools for monitoring and verifying carbon sinks, Geotree provides scientific support for this market. The aim of this internship was to implement a service solution to automate the storage and retrieval of satellite data, central to Geotree. Indeed, quick and easy access to a large amount of data is becoming a common need. After an analysis phase of the STAC data standard, the work on this project consisted of developing an IT solution for the management and storage of satellite data. There are a number of prospects for this project. Finalising the deployment of the API on the Cloud receiving the solution is essential for its future use by the company’s team of data scientists. On the other hand, this API will be able to accommodate more different data (not standardised by STAC) and other functions (read function). Note that the Python codes, functional and commented, implemented during the internship is accessible via the Github continuous integration platform, but remains the property of Geotree. Con?sequently, no script from the source code will be presented in this report. Note de contenu : Introduction
1. Internchip presentation
2. STAC standard
3. Solution architecture
4. Project management
ConclusionNuméro de notice : 24172 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Geotree / Mantle Labs (Vienne) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103729 An automated approach for clipping geographic data before projection that maintains data integrity and minimizes distortion for virtually any projection method / Jim Graham in Cartographica, Vol 57 n° 4 (December 2022)
[article]
Titre : An automated approach for clipping geographic data before projection that maintains data integrity and minimizes distortion for virtually any projection method Type de document : Article/Communication Auteurs : Jim Graham, Auteur Année de publication : 2022 Article en page(s) : pp 257 - 269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Projections
[Termes IGN] carroyage
[Termes IGN] intégrité des données
[Termes IGN] polygone
[Termes IGN] projection
[Termes IGN] Python (langage de programmation)Résumé : (auteur) Selecting a map projection is key to minimizing distortion and thus clear communication of spatial data and accurate spatial analysis. Methods exist for selecting projections based on the intended area of use but not for finding polygons that can be used to clip geographic data to ensure the data are projected correctly and within desired distortion limits. The projection methods available in the Proj library were examined to determine the nature of the errors and distortions they created based on global data and a wide variety of available settings. Approaches were then identified for each projection including simple bounding boxes and more complex clipping polygons. To make sure that errors were not introduced into the projected data, data integrity polygons (DIPs) were created by placing a grid of cells over the Earth and then finding a cell near the origin that was within the specified criteria. Adjacent cells were added to the DIPs that met the criteria until no additional cells could be added. The criteria included projected cell sides could not intersect with themselves or other cells, the order of the cell corners could not be reversed, and distortion within the cell had to be within specified limits. I found that up to two DIPs with a limit on length distortion of a factor of 4 provided a general solution for all but three projection methods. Limitations included the time to find DIPs at high resolution. Clipping polygons and visualizations of the results were made available on a website. Numéro de notice : A2022-923 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3138/cart-2021-0015 Date de publication en ligne : 01/12/2022 En ligne : https://doi.org/10.3138/cart-2021-0015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102465
in Cartographica > Vol 57 n° 4 (December 2022) . - pp 257 - 269[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 031-2022041 RAB Revue Centre de documentation En réserve L003 Disponible LinkClimate: An interoperable knowledge graph platform for climate data / Jiantao Wu in Computers & geosciences, vol 169 (December 2022)
[article]
Titre : LinkClimate: An interoperable knowledge graph platform for climate data Type de document : Article/Communication Auteurs : Jiantao Wu, Auteur ; Fabrizio Orlandi, Auteur ; Declan O'Sullivan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105215 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] changement climatique
[Termes IGN] données météorologiques
[Termes IGN] données multisources
[Termes IGN] historique des données
[Termes IGN] interopérabilité sémantique
[Termes IGN] National oceanic and atmospheric administration
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] réseau sémantique
[Termes IGN] site wiki
[Termes IGN] SPARQL
[Termes IGN] web sémantiqueRésumé : (auteur) Climate science has become more ambitious in recent years as global awareness about the environment has grown. To better understand climate, historical climate(e.g. archived meteorological variables such as temperature, wind, water, etc.) and climate-related data (e.g. geographical features and human activities) are widely used by today’s climate research to derive models for an explainable climate change and its effects. However, such data sources are often dispersed across a multitude of disconnected data silos on the Web. Moreover, there is a lack of advanced climate data platforms to enable multi-source heterogeneous climate data analysis, therefore, researchers must face a stern challenge in collecting and analyzing multi-source data. In this paper, we address this problem by proposing a climate knowledge graph for the integration of multiple climate data and other data sources into one service, leveraging Web technologies (e.g. HTTP) for multi-source climate data analysis. The proposed knowledge graph is primarily composed of data from the National Oceanic and Atmospheric Administration’s daily climate summaries, OpenStreetMap, and Wikidata, and it supports joint data queries on these widely used databases. This paper shows, with a use case in Ireland and the United Kingdom, how climate researchers could benefit from this platform as it allows them to easily integrate datasets from different domains and geographical locations. Numéro de notice : A2022-789 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cageo.2022.105215 Date de publication en ligne : 30/08/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105215 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101897
in Computers & geosciences > vol 169 (December 2022) . - n° 105215[article]Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications / Wenwen Li in Computers, Environment and Urban Systems, vol 98 (December 2022)
[article]
Titre : Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications Type de document : Article/Communication Auteurs : Wenwen Li, Auteur ; Sizhe Wang, Auteur ; Sheng wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101884 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] base de données relationnelles
[Termes IGN] entrepôt de données
[Termes IGN] ontologie
[Termes IGN] RDF
[Termes IGN] référentiel sémantique
[Termes IGN] requête spatiale
[Termes IGN] réseau sémantique
[Termes IGN] SPARQL
[Termes IGN] stockage de données
[Termes IGN] test de performance
[Termes IGN] web sémantiqueRésumé : (auteur) Knowledge graph has become a cutting-edge technology for linking and integrating heterogeneous, cross-domain datasets to address critical scientific questions. As big data has become prevalent in today's scientific analysis, semantic data repositories that can store and manage large knowledge graph data have become critical in successfully deploying spatially explicit knowledge graph applications. This paper provides a comprehensive evaluation of the popular semantic data repositories and their computational performance in managing and providing semantic support for spatial queries. There are three types of semantic data repositories: (1) triple store solutions (RDF4j, Fuseki, GraphDB, Virtuoso), (2) property graph databases (Neo4j), and (3) an Ontology-Based Data Access (OBDA) approach (Ontop). Experiments were conducted to compare each repository's efficiency (e.g., query response time) in handling geometric, topological, and spatial-semantic related queries. The results show that Virtuoso achieves the overall best performance in both non-spatial and spatial-semantic queries. The OBDA solution, Ontop, has the second-best query performance in spatial and complex queries and the best storage efficiency, requiring the least data-to-RDF conversion efforts. Other triple store solutions suffer from various issues that cause performance bottlenecks in handling spatial queries, such as inefficient memory management and lack of proper query optimization. Numéro de notice : A2022-720 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101884 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101884 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101654
in Computers, Environment and Urban Systems > vol 98 (December 2022) . - n° 101884[article]Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
[article]
Titre : Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds Type de document : Article/Communication Auteurs : Zhilin Tian, Auteur ; Shihua Li, Auteur Année de publication : 2022 Article en page(s) : n° 5705111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois
[Termes IGN] branche (arbre)
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] données lidar
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] feuille (végétation)
[Termes IGN] graphe
[Termes IGN] Python (langage de programmation)
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Terrestrial light detection and ranging (lidar) is capable of resolving trees at the branch/leaf level with accurate and dense point clouds. The separation of leaf and wood components is a prerequisite for the estimation of branch/leaf-scale biophysical properties and realistic tree model reconstruction. Most existing methods have been tested on trees with similar structures; their robustness for trees of different species and sizes remains relatively unexplored. This study proposed a new graph-based leaf–wood separation (GBS) method for individual trees purely using the xyz -information of the point cloud. The GBS method fully utilized the shortest path-based features, as the shortest path can effectively reflect the structures for trees of different species and sizes. Ten types of tree data—covering tropical, temperate, and boreal species—with heights ranging from 5.4 to 43.7 m, were used to test the method performance. The mean accuracy and kappa coefficient at the point level were 94% and 0.78, respectively, and our method outperformed two other state-of-the-art methods. Through further analysis and testing, the GBS method exhibited a strong ability for detecting small and leaf-surrounded branches, and was also sufficiently robust in terms of data subsampling. Our research further demonstrated the potential of the shortest path-based features in leaf–wood separation. The entire framework was provided for use as an open-source Python package, along with our labeled validation data. Numéro de notice : A2022-853 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3218603 Date de publication en ligne : 01/11/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3218603 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102099
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 11 (November 2022) . - n° 5705111[article]Habitats, agricultural practices, and population dynamics of a threatened species: The European turtle dove in France / Christophe Sauser in Biological Conservation, vol 274 (octobre 2022)PermalinkNovel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud / Jie Yang in Forests, vol 13 n° 10 (October 2022)PermalinkPyeo: A Python package for near-real-time forest cover change detection from Earth observation using machine learning / J.F. Roberts in Computers & geosciences, vol 167 (October 2022)PermalinkGNSSseg, a statistical method for the segmentation of daily GNSS IWV time series / Annarosa Quarello in Remote sensing, vol 14 n° 14 (July-2 2022)PermalinkA geospatial workflow for the assessment of public transit system performance using near real-time data / Anastassios Dardas in Transactions in GIS, vol 26 n° 4 (June 2022)PermalinkNarrative cartography with knowledge graphs / Gengchen Mai in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)PermalinkAn algorithm to assist the robust filter for tightly coupled RTK/INS navigation system / Zun Niu in Remote sensing, vol 14 n° 10 (May-2 2022)PermalinkAutomated inventory of broadleaf tree plantations with UAS imagery / Aishwarya Chandrasekaran in Remote sensing, vol 14 n° 8 (April-2 2022)PermalinkA survey on semantic question answering systems / Christina Antoniou in The Knowledge Engineering Review, vol 37 (2022)PermalinkPermalink