Descripteur
Documents disponibles dans cette catégorie (247)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models / Victoria Sol Galligani in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
[article]
Titre : A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models Type de document : Article/Communication Auteurs : Victoria Sol Galligani, Auteur ; Die Wang, Auteur ; Paola Belen Corales, Auteur ; Catherine Prigent, Auteur Année de publication : 2021 Article en page(s) : pp 8968 - 8977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image GPM
[Termes IGN] image radar
[Termes IGN] latitude
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] nuage
[Termes IGN] polarisation
[Termes IGN] prévision météorologique
[Termes IGN] radiomètre à hyperfréquence
[Termes IGN] reconstruction du signal
[Termes IGN] variation saisonnièreRésumé : (auteur) Microwave cloud polarized observations have shown the potential to improve precipitation retrievals since they are linked to the orientation and shape of ice habits. Stratiform clouds show larger brightness temperature (TB) polarization differences (PDs), defined as the vertically polarized TB (TBV) minus the horizontally polarized TB (TBH), with ~10 K PD values at 89 GHz due to the presence of horizontally aligned snowflakes, while convective regions show smaller PD signals, as graupel and/or hail in the updraft tend to become randomly oriented. The launch of the global precipitation measurement (GPM) microwave imager (GMI) has extended the availability of microwave polarized observations to higher frequencies (166 GHz) in the tropics and midlatitudes, previously only available up to 89 GHz. This study analyzes one year of GMI observations to explore further the previously reported stable relationship between the PD and the observed TBs at 89 and 166 GHz, respectively. The latitudinal and seasonal variability is analyzed to propose a cloud scattering polarization parameterization of the PD-TB relationship, capable of reconstructing the PD signal from simulated TBs. Given that operational radiative transfer (RT) models do not currently simulate the cloud polarized signals, this is an alternative and simple solution to exploit the large number of cloud polarized observations available. The atmospheric radiative transfer simulator (ARTS) is coupled with the weather research and forecasting (WRF) model, in order to apply the proposed parameterization to the RT simulated TBs and hence infer the corresponding PD values, which show to reproduce the observed GMI PDs well. Numéro de notice : A2021-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3049921 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3049921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98871
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 8968 - 8977[article]Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images / Majid Rahimzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
[article]
Titre : Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images Type de document : Article/Communication Auteurs : Majid Rahimzadegan, Auteur ; Arash Davari, Auteur ; Ali Sayadi, Auteur Année de publication : 2021 Article en page(s) : pp 649-660 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Microwave Scanning Radiometer
[Termes IGN] coefficient de corrélation
[Termes IGN] humidité du sol
[Termes IGN] image Aqua-AMSR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Iran
[Termes IGN] polarisation
[Termes IGN] réflectance du solRésumé : (Auteur) Soil moisture content (SMC), product of Advanced Microwave Scanning Radiometer 2 (AMSR2), is not at an adequate level of accuracy on a regional scale. The aim of this study is to introduce a simple method to estimate SMC while synergistically using AMSR2 and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements with a higher accuracy on a regional scale. Two MODIS products, including daily reflectance (MYD021) and nighttime land surface temperature (LST) products were used. In 2015, 1442 in situ SMC measurements from six stations in Iran were used as ground-truth data. Twenty models were evaluated using combinations of polarization index (PI), index of soil wetness (ISW), normalized difference vegetation index (NDVI), and LST. The model revealed the best results using a quadratic combination of PI and ISW, a linear form of LST, and a constant value. The overall correlation coefficient, root-mean-square error, and mean absolute error were 0.59, 4.62%, and 3.01%, respectively. Numéro de notice : A2021-673 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00085 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.14358/PERS.20-00085 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98835
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 9 (September 2021) . - pp 649-660[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021091 SL Revue Centre de documentation Revues en salle Disponible DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques / Ali H. Ahmed Suliman in Geocarto international, vol 36 n° 7 ([15/04/2021])
[article]
Titre : DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques Type de document : Article/Communication Auteurs : Ali H. Ahmed Suliman, Auteur ; W. Gumindoga, Auteur ; Taymoor A. Awchi, Auteur ; Ayob Katimon, Auteur Année de publication : 2021 Article en page(s) : pp 803 - 819 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] analyse comparative
[Termes IGN] bassin hydrographique
[Termes IGN] carte topographique
[Termes IGN] Iran
[Termes IGN] limite de résolution géométrique
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] ruissellementRésumé : (Auteur) The accurate estimation of terrain characteristics is central in rainfall runoff modelling. In this study, influences of Digital Elevation Models (DEMs) obtained from different sources, resolutions and rescaling techniques are compared for Peak flow prediction in a large-scale watershed by the Topographic driven model (TOPMODEL). The comparison includes graphical representation and statistical assessments using daily time series data. As a result, DEM extracted from contour map (DEM-Con) showed better performance when DEM resolutions increased, but the Advanced Space-borne Thermal Emission and Reflection Radiometer (DEM-Aster) continued to achieve less Relative Error (RE) at low resolution. Moreover, better RE values were found at cubic convolution technique to predict the peaks followed by nearest neighbor and bilinear. In addition, this study indicated that DEM resolution is more sensitive factor for TOPMODEL simulation compared to DEM sources and rescaling techniques for streamflow and peaks prediction. Numéro de notice : A2021-295 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622599 Date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1622599 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97355
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 803 - 819[article]Remote sensing and GIS / Basudeb Bhatta (2021)
Titre : Remote sensing and GIS Type de document : Guide/Manuel Auteurs : Basudeb Bhatta, Auteur Mention d'édition : 3ème édition Editeur : Oxford, Londres, ... : Oxford University Press Année de publication : 2021 Importance : 752 p. Format : 24 x 18 cm ISBN/ISSN/EAN : 978-0-19-949664-8 Note générale : Bibliographie
additional reading material with Oxford arealLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] acquisition d'images
[Termes IGN] airborne multispectral scanner
[Termes IGN] analyse spatiale
[Termes IGN] Global Navigation Satellite System
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Lidar
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation 3D
[Termes IGN] orthorectification
[Termes IGN] Passive and Active L and S band Sensor
[Termes IGN] photographie aérienne
[Termes IGN] Satellite Microwave Radiometer
[Termes IGN] scène 3D
[Termes IGN] stéréoscopie
[Termes IGN] système d'information géographique
[Termes IGN] traitement d'image
[Termes IGN] visualisation 3DIndex. décimale : 35.00 Télédétection - généralités Résumé : (Editeur) Beginning with the history and basic concepts of remote sensing and GIS, the book gives an exhaustive coverage of optical, thermal, and microwave remote sensing, global navigation satellite systems (such as GPS and IRNSS), digital photogrammetry, visual image analysis, digital image processing, spatial and attribute data model, geospatial analysis, and planning, implementation, and management of GIS. It also presents the modern trends of remote sensing and GIS with an illustrated discussion on its numerous applications. Note de contenu : 1. Concept of Remote Sensing
1.1 Introduction
1.2 Distance of Remote Sensing
1.3 Definition of Remote Sensing
1.4 Remote Sensing: Art and/or Science
1.5 Data
1.6 Remote Sensing Process
1.7 Source of Energy
1.8 Interaction with Atmosphere
1.9 Interaction with Target
1.9.1 Hemispherical Absorptance, Transmittance, and Reflectan
1.10 Interaction with the Atmosphere Again
1.11 Recording of Energy by Sensor
1.12 Transmission, Reception, and Processing
1.13 Interpretation and Analysis
1.14 Applications of Remote Sensing
1.15 Advantages of Remote Sensing
1.16 Limitations of Remote Sensing
1.17 Ideal Remote Sensing System
2. Types of Remote Sensing and Sensor Characteristics
2.1 Introduction
2.2 Types of Remote Sensing
2.3 Characteristics of Images
2.4 Orbital Characteristics of Satellite
2.5 Remote Sensing Satellites
2.6 Concept of Swath
2.7 Concept of Nadir
2.8 Sensor Resolutions
2.9 Image Referencing System
2.9.1 Path
2.9.2 Row
2.9.3 Orbital Calendar
3. History of Remote Sensing and Indian Space Program
3.1 Introduction
3.2 The Early Age
3.3 The Middle Age
3.4 The Modern Age or Space Age
3.5 Indian Space Program
4. Photographic Imaging
4.1 Introduction
4.2 Camera Systems
4.3 Types of Camera
4.4 Filter
4.5 Film
4.6 Geometry of Aerial Photography
4.7 Ideal Time and Atmosphere for Aerial Remote Sensing
5. Digital Imaging
5.1 Introduction
5.2 Digital Image
5.3 Sensor
5.4 Imaging by Scanning Technique
5.5 Hyper-spectral Imaging
5.6 Imaging By Non-scanning Technique
5.7 Thermal Remote Sensing
5.8 Other Sensors
6. Microwave Remote Sensing
6.1 Introduction
6.2 Passive Microwave Remote Sensing
6.3 Active Microwave Remote Sensing
6.4 Radar Imaging
6.5 Airborne Versus Space-Borne Radars
6.6 Radar Systems
7. Ground-truth Data and Global Positioning System
7.1 Introduction
7.2 Requirements of Ground-Truth Data
7.3 Instruments for Ground Truthing
7.4 Parameters of Ground Truthing
7.5 Factors of Spectral Measurement
7.6 Global Navigation Satellite System
8. Photogrammetry
8.1 Introduction
8.2 Development of Photogrammetry
8.3 Classification of Photogrammetry
8.4 Photogrammetric Process
8.5 Acquisition of Imagery and its Support Data
8.6 Orientation and Triangulation
8.7 Stereo Model Compilation
8.8 Stereoscopic 3D Viewing
8.9 Stereoscopic Measurement
8.10 DTM/DEM Generation
8.11 Contour Map Generation
8.12 Orthorectification
8.13 3D Feature Extraction
8.14 3D Scene Modelling
8.15 Photogrammetry and LiDAR
8.16 Radargrammetry and Radar Interferometry
8.17 Limitations of Photogrammetry
9. Visual Image Interpretation
9.1 Introduction
9.2 Information Extraction by Human and Computer
9.3 Remote Sensing Data Products
9.4 Border or Marginal Information
9.5 Image Interpretation
9.6 Elements of Visual Image Interpretation
9.7 Interpretation Keys
9.8 Generation of Thematic Maps
9.9 Thermal Image Interpretation
9.10 Radar Image Interpretation
10. Digital Image Processing
10.1 Introduction
10.2 Categorization of Image Processing
10.3 Image Processing Systems
10.4 Digital Image
10.5 Media for Digital Data Recording, Storage, and Distribution
10.6 Data Formats of Digital Image
10.7 Header Information
10.8 Display of Digital Image
10.9 Pre-processing
10.10 Image Enhancement
10.11 Image Transformation
10.12 Image Classification
11. Data Integration, Analysis, and Presentation
11.1 Introduction
11.2 Multi-approach of Remote Sensing
11.3 Integration with Ground Truth and Other Ancillary Data
11.4 Integration of Transformed Data
11.5 Integration with GIS
11.6 Process of Remote Sensing Data Analysis
11.7 The Level of Detail
11.8 Limitations of Remote Sensing Data Analysis
11.9 Presentation
12. Applications of Remote Sensing
12.1 Introduction
12.2 Land Cover and Land Use
12.3 Agriculture
12.4 Forestry
12.5 Geology
12.6 Geomorphology
12.7 Urban Applications
12.8 Hydrology
12.9 Mapping
12.10 Oceans and Coastal Monitoring
12.11 Monitoring of Atmospheric Constituents
PART II Geographic Information Systems and Geospatial Analysis
13. Concept of Geographic Information Systems
13.1 Introduction
13.2 Definitions of GIS
13.3 Key Components of GIS
13.4 GIS-An Integration of Spatial and Attribute Information
13.5 GIS-Three Views of Information System
13.6 GIS and Related Terms
13.7 GIS-A Knowledge Hub
13.8 GIS-A Set of Interrelated Subsystems
13.9 GIS-An Information Infrastructure
13.10 Origin of GIS
14. Functions and Advantages of GIS
14.1 Introduction
14.2 Functions of GIS
14.3 Application Areas of GIS
14.4 Advantages of GIS
14.5 Functional Requirements of GIS
14.6 Limitations of GIS
15. Spatial Data Model
15.1 Introduction
15.2 Spatial, Thematic, and Temporal Dimensions of Geographic Data
15.3 Spatial Entity and Object
15.4 Spatial Data Model
15.5 Raster Data Model
15.6 Vector Data Model
15.7 Raster versus Vector
15.8 Object-Oriented Data Model
15.9 File Formats of Spatial Data
16. Attribute Data Management and Metadata Concept
16.1 Introduction
16.2 Concept of Database and DBMS
16.3 Advantages of DBMS
16.4 Functions of DBMS
16.5 File and Data Access
16.6 Data Models
16.7 Database Models
16.8 Data Models in GIS
16.9 Concept of SQL
16.10 Concept of Metadata
17. Process of GIS
17.1 Introduction
17.2 Data Capture
17.3 Data Sources
17.4 Data Encoding Methods
17.5 Linking of Spatial and Attribute Data
17.6 Organizing Data for Analysis
18. Geospatial Analysis
18.1 Introduction
18.2 Geospatial Data Analysis
18.3 Integration and Modelling of Spatial Data
18.4 Geospatial Data Analysis Methods
18.5 Database Query
18.6 Geospatial Measurements
18.7 Overlay Operations
18.8 Network Analysis
18.9 Surface Analysis
18.10 Geostatistics
18.11 Geovisualization
19. Planning, Implementation, and Management of GIS
19.1 Introduction
19.2 Planning of Project
19.3 Implementation of Project
19.4 Management of Project
19.5 Keys for Successful GIS
19.6 Reasons for Unsuccessful GIS
20. Modern Trends of GIS
20.1 Introduction
20.2 Local to Global Concept in GIS
20.3 Increase in Dimensions in GIS
20.4 Linear to Non-linear Techniques in GIS
20.5 Development in Relation between Geometry and Algebra in GIS
20.6 Development of Common Techniques in GIS
20.7 Integration of GIS and Remote Sensing
20.8 Integration of GIS and Multimedia
20.9 3D GIS
20.9.1 Virtual Reality in GIS
20.10 Integration of 3D GIS and Web GIS
20.11 4D GIS and Real-time GIS
20.12 Mobile GIS
20.12.1 Mobile mapping
20.13 Collaborative GIS (CGIS)
21. Change Detection and Geosimulation
21.1 Visual change detection
21.2 Thresholding
21.3 Image difference
21.4 Image regression
21.5 Image ratioing
21.6 Vegetation index differencing
21.7 Principal component differencing
21.8 Multi-temporal image stock classification
21.9 Post classification comparison
21.10 Change vector analysis
21.12 Cellular automata simulation
21.13 Multi-agent simulation
21.14 ANN learning in simulation
Appendix A - Concept of Map, Coordinate System, and Projection
Appendix B - Concept on Mathematical TopicsNuméro de notice : 26518 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/POSITIONNEMENT Nature : Manuel de cours DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97342 A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer / Xing Yan in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
[article]
Titre : A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer Type de document : Article/Communication Auteurs : Xing Yan, Auteur ; Chen Liang, Auteur ; Yize Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 8427 - 8437 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage profond
[Termes IGN] changement climatique
[Termes IGN] classification par réseau neuronal
[Termes IGN] humidité du sol
[Termes IGN] modèle atmosphérique
[Termes IGN] radiomètre à hyperfréquence
[Termes IGN] température au solRésumé : (auteur) The ground-based microwave radiometer (MWR) retrieves atmospheric profiles with a high temporal resolution for temperature and humidity up to a height of 10 km. Such profiles are critical for understanding the evolution of climate systems. To improve the accuracy of profile retrieval in MWR, we developed a deep learning approach called batch normalization and robust neural network (BRNN). In contrast to the traditional backpropagation neural network (BPNN), which has previously been applied for MWR profile retrieval, BRNN reduces overfitting and has a greater capacity to describe nonlinear relationships between MWR measurements and atmospheric structure information. Validation of BRNN with the radiosonde demonstrates a good retrieval capability, showing a root-mean-square error of 1.70 K for temperature, 11.72% for relative humidity (RH), and 0.256 g/m 3 for water vapor density. A detailed comparison with various inversion methods (BPNN, extreme gradient boosting, support vector machine, ridge regression, and random forest) has also been conducted in this research, using the same training and test data sets. From the comparison, we demonstrated that BRNN significantly improves retrieval accuracy, particularly for the retrieval of temperature and RH near the surface. Numéro de notice : A2020-741 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987896 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987896 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96371
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8427 - 8437[article]Challenges in flood modeling over data-scarce regions: how to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco / El Mahdi El Khalk in Natural Hazards and Earth System Sciences, vol 20 n° 10 (October 2020)PermalinkImproved SMAP dual-channel algorithm for the retrieval of soil moisture / Mario Julian Chaubell in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)PermalinkEstimation of variance and spatial correlation width for fine-scale measurement error in digital elevation model / Mikhail L. Uss in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)PermalinkTemporal decorrelation at C- and L-band over olive tree plantations: first insights from the Marocscat campaigns / Ludovic Villard (2020)PermalinkUncertainty analysis of remotely-acquired thermal infrared data to extract the thermal Properties of active lava surfaces / James A. Thompson in Remote sensing, vol 12 n° 1 (January 2020)PermalinkImproved algorithms for the measurement of total precipitable water and cloud liquid water from SARAL microwave radiometer observations / Rajput Neha Mangalsinh in Marine geodesy, vol 42 n° 4 (July 2019)PermalinkLand Surface Remote Sensing in Continental Hydrology, ch. 3. Using satellite scatterometers to monitor continental surfaces / Pierre-Louis Frison (2017)PermalinkTélédétection pour l'observation des surfaces continentales, ch. 3. Utilisation des diffusiomètres satellitaires pour le suivi des surfaces continentales / Pierre-Louis Frison (2017)PermalinkTélédétection pour l'observation des surfaces continentales, Volume 4. Observation des surfaces continentales par télédétection 2 / Nicolas Baghdadi (2017)PermalinkAdaptive estimation of the stable boundary layer height using combined Lidar and microwave radiometer observations / Umar Saeed in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)Permalink