Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image EOS > image Aqua > image Aqua-AMSR
image Aqua-AMSRVoir aussi |
Documents disponibles dans cette catégorie (15)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Studying informativeness of satellite image texture for sea ice state retrieval using deep learning methods / Clément Fougerouse (2022)
Titre : Studying informativeness of satellite image texture for sea ice state retrieval using deep learning methods Type de document : Mémoire Auteurs : Clément Fougerouse, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 47 p. Format : 21 x 30 cm Note générale : Bibliographie
Rapport de projet pluridisciplinaire, cycle ING2Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] glace de mer
[Termes IGN] image Aqua-AMSR
[Termes IGN] image C-SAR
[Termes IGN] image radar moirée
[Termes IGN] inférence
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] restauration d'imageIndex. décimale : PROJET Mémoires : Rapports de projet - stage des ingénieurs de 2e année Résumé : (Auteur) De nos jours, la détermination des glaces de mers se fait manuellement et est réalisée par des experts, les cartes obtenues ne sont donc pas bien précises et peuvent comporter des erreurs. L’objectif de l’étude est de pouvoir automatiser la classification des différents types de glaces de mer à partir d’images satellitaires SAR et AMSR2, en utilisant des réseaux de neurones convolutifs et d’améliorer la précision des réseaux déjà existants. Pour cela, nous partons des réseaux existants et nous rajoutons de nouvelles données d’apprentissages et nous modifions la structure du réseau de neurones convolutif. Puis nous étudions la texture des images pour pouvoir prendre en compte les formes des glaces et ainsi de créer plusieurs classes pour les glaces de mers. Que ce soit avec l’ajout de nouvelles données ou la modification de la structure du réseau, la précision des prédictions du réseau de neurones a grandement été amélioré. Nous passons d’une précision de 74% en moyenne sur les quatre classes utilisées à une moyenne de 95% après toutes les améliorations réalisées. Notons également, que la détection de la présence ou non de glace est très précise 98%. Quant à l’ajout des nouvelles classes et à la prise en compte de la texture des images satellitaires, nous obtenons des résultats très intéressants : le classificateur permet de distinguer certaines combinaisons, mais a du mal pour d’autres, notamment pour les glaces qui ont des petites formes. Ainsi, cette étude a permis d’améliorer considérablement la précision des réseaux existants pour classer la glace dans les quatre types habituels bien qu'ils restent moins performants pour classer en prenant en compte la forme des glaces. L’étude du caractère informatif a permis de connaitre les combinaisons détectées par la texture des images SAR. Note de contenu : 1. Introduction
2. Data used for training the CNN
2.1 NetCDF files
2.2 SAR data
2.3 AMSR2 data
2.4 Ice Chart
3. Processing
3.1 Overview
3.2 Statistical analysis
3.3 Preprocessing
3.3 Training
3.4 Inference
3.4 Baseline binary CNN
3.5 Baseline continuous CNN
3.6 Adding the larger area SAR data
3.7 Adding the AMSR2 data
3.8 Optimization
3.9 Experiments with informativeness
4. Results
4.1 Statistics
4.2 Baseline Binary
4.3 Hugo continuous
4.4 Extended SAR sub-image
4.5 AMSR2
4.6 Optimization
4.7 Informativeness tests
5. Conclusion and discussionNuméro de notice : 26868 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Nansen Environmental and Remote Sensing Center NERSC Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101688 Documents numériques
en open access
Studying informativeness of satellite image texture for sea ice state retrieval using deep learning methods - pdf auteurAdobe Acrobat PDF Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images / Majid Rahimzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
[article]
Titre : Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images Type de document : Article/Communication Auteurs : Majid Rahimzadegan, Auteur ; Arash Davari, Auteur ; Ali Sayadi, Auteur Année de publication : 2021 Article en page(s) : pp 649-660 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Microwave Scanning Radiometer
[Termes IGN] coefficient de corrélation
[Termes IGN] humidité du sol
[Termes IGN] image Aqua-AMSR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Iran
[Termes IGN] polarisation
[Termes IGN] réflectance du solRésumé : (Auteur) Soil moisture content (SMC), product of Advanced Microwave Scanning Radiometer 2 (AMSR2), is not at an adequate level of accuracy on a regional scale. The aim of this study is to introduce a simple method to estimate SMC while synergistically using AMSR2 and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements with a higher accuracy on a regional scale. Two MODIS products, including daily reflectance (MYD021) and nighttime land surface temperature (LST) products were used. In 2015, 1442 in situ SMC measurements from six stations in Iran were used as ground-truth data. Twenty models were evaluated using combinations of polarization index (PI), index of soil wetness (ISW), normalized difference vegetation index (NDVI), and LST. The model revealed the best results using a quadratic combination of PI and ISW, a linear form of LST, and a constant value. The overall correlation coefficient, root-mean-square error, and mean absolute error were 0.59, 4.62%, and 3.01%, respectively. Numéro de notice : A2021-673 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00085 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.14358/PERS.20-00085 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98835
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 9 (September 2021) . - pp 649-660[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021091 SL Revue Centre de documentation Revues en salle Disponible Geospatial analysis of September, 2019 floods in the lower gangetic plains of Bihar using multi-temporal satellites and river gauge data / C.M. Bhatt in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
[article]
Titre : Geospatial analysis of September, 2019 floods in the lower gangetic plains of Bihar using multi-temporal satellites and river gauge data Type de document : Article/Communication Auteurs : C.M. Bhatt, Auteur ; Amitesh Gupta, Auteur ; Arijit Roy, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 84 - 102 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] crue
[Termes IGN] données spatiotemporelles
[Termes IGN] Gange (fleuve)
[Termes IGN] humidité du sol
[Termes IGN] image Aqua-AMSR
[Termes IGN] image Aqua-MODIS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra-MODIS
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] précipitationRésumé : (auteur) During late September, 2019 Bihar was struggling with severe flooding problem, which otherwise is marked as a period of flood recession due to withdrawal of south-east monsoons. The present study assess the flood situation using Sentinel-1 SAR images and complements the understanding about the flood event using long term (2000-18) multi-temporal space based flood sensitive proxy indicators like precipitation (GPM), soil moisture (AMSR-2), vegetation condition (MODIS) together with ground based river gauge (CWC) data. The study reveals that in 2019 during the 39th week of the year (late September) the central and eastern parts of Bihar witnessed heavy precipitation (176 percent higher than average), leading to enhanced soil moisture build up (19 percent higher than average) and consequently triggering severe flooding. River Ganga was observed to be flowing above danger level for almost two weeks. Due to the prolonged submergence by floodwaters a significant drop was observed in the NDVI and EVI values of about 13.7 and 11.1 percent respectively from the normal. About 8.36 lakh ha area was observed to be inundated, impacting about 9.26 million population. Patna followed by Bhagalpur were the two worst affected districts with almost 30% and 36% of districts geographical area being flooded. Numéro de notice : A2021-107 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1861113 Date de publication en ligne : 24/12/2020 En ligne : https://doi.org/10.1080/19475705.2020.1861113 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96904
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 84 - 102[article]Semantic segmentation of sea ice type on Sentinel-1 SAR data using convolutional neural networks / Alissa Kouraeva (2021)
Titre : Semantic segmentation of sea ice type on Sentinel-1 SAR data using convolutional neural networks Type de document : Mémoire Auteurs : Alissa Kouraeva, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2021 Importance : 40 p. Format : 21 x 30 cm Note générale : Bibliographie
Rapport de projet pluridisciplinaire, cycle ING2Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] eau de mer
[Termes IGN] géovisualisation
[Termes IGN] glace de mer
[Termes IGN] image Aqua-AMSR
[Termes IGN] image Sentinel-SAR
[Termes IGN] matrice de confusion
[Termes IGN] restauration d'image
[Termes IGN] segmentation sémantiqueIndex. décimale : PROJET Mémoires : Rapports de projet - stage des ingénieurs de 2e année Résumé : (Auteur) La classification des types de glace marine est une composante essentielle de l’observation de la banquise dans les régions polaires. La présente étude cherche à améliorer l’automatisation de la construction de cartes de type de glace (ice charts), d’habitude manuellement réalisées par des experts, en utilisant des réseaux de neurones convolutifs (CNN). Les réseaux utilisent des données radar issues des missions Sentinel-1, et des données micro-ondes passif (AMSR2) en entrée. La cible de ces réseaux est composée de cartes de type de glace utilisées pour la navigation. Une carte de types de glace se présente sous la forme de multiples polygones. Elle montre les concentrations partielles, les stades de développement ainsi que les formes des trois types de glaces dominants. La glace est considérée comme uniforme au sein d’un polygone. Cependant, les cartes de type de glaces ne sont pas une fidèle représentation de la réalité, car les pixels au sein d’un polygone appartiennent à différentes classes. De plus, le niveau de détail d’un polygone est grossier et les experts peuvent faire des erreurs dans la classification du type de glace. Afin de minimiser ce type d’erreur, nous utilisons deux types d’encodage one-hot (binaire et continu) qui améliorent la représentation des types de glace et prennent en compte les incertitudes. Plusieurs configurations de réseaux de neurones sont testées lors de tests de sensibilité. Parmi elles, deux sont retenues car les plus performantes pour trois types de surfaces (eau, glace de première année, glace de plusieurs années) en termes de valeur de précision, de fonction de perte et de visualisation. Note de contenu :
Introduction
1. Data
1.1 Sentinel-1 SAR data
1.2 AMSR2 PMW data
1.3 Ice charts
2. Methods
2.1 Data preprocessing
2.2 Experiments with CNN architecture
3. Results
3.1 Evolution of validation loss
3.2 Evolution of accuracy
3.3 Optimal CNN architectures
3.4 Individual patches inferred from a test image
3.5 Maps of sea ice types inferred from test images
4. Discussion
4.1 Interpretation of SIGRID codes
4.2 Evaluation of CNN performance
4.3 Selection of the best network
4.4 Future work
5. Internship feedback
5.1 General feedback
5.2 Organisation during the internship
A Confusion Matrices
B FiguresNuméro de notice : 26608 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Nansen Environmental and Remote Sensing Center NERSC Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98534 Documents numériques
peut être téléchargé
Semantic segmentation of sea ice type on Sentinel-1 SAR data... - pdf auteurAdobe Acrobat PDF Fusing microwave and optical satellite observations to simultaneously retrieve surface soil moisture, vegetation water content, and surface soil roughness / Yohei Sawada in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
[article]
Titre : Fusing microwave and optical satellite observations to simultaneously retrieve surface soil moisture, vegetation water content, and surface soil roughness Type de document : Article/Communication Auteurs : Yohei Sawada, Auteur ; Toshio Koike, Auteur ; Kentaro Aida, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 6195 - 6206 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] fusion d'images
[Termes IGN] humidité du sol
[Termes IGN] image Aqua-AMSR
[Termes IGN] image Aqua-MODIS
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] rugosité du sol
[Termes IGN] teneur en eau de la végétationRésumé : (Auteur) Uncertainty in surface soil roughness strongly degrades the performance of surface soil moisture (SSM) and vegetation water content (VWC) retrieval from passive microwave observations. This paper proposes an algorithm to objectively determine the surface soil roughness parameter of the radiative transfer model by fusing microwave and optical satellite observations. It is then demonstrated in a semiarid in situ observation site. The roughness correction of this new algorithm positively impacted the performance of SSM (root-mean-square error reduced from 0.088 to 0.070) and VWC retrieval from the Advanced Microwave Scanning Radiometer 2 and Moderate Resolution Imaging Spectroradiometer. Since this surface soil roughness correction may be transferrable to other microwave satellite retrieval algorithms such as those for the Soil Moisture and Ocean Salinity and Soil Moisture Active Passive satellites, this new algorithm can contribute to many microwave earth surface observation satellite missions. Numéro de notice : A2017-746 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2722468 En ligne : https://doi.org/10.1109/TGRS.2017.2722468 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88781
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6195 - 6206[article]Baltic sea ice concentration estimation using SENTINEL-1 SAR and AMSR2 microwave radiometer data / Juha Karvonen in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)PermalinkPassive microwave remote sensing of soil moisture based on dynamic vegetation scattering properties for AMSR-E / Jinyang Du in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)PermalinkImproving soil moisture profile prediction with the particle Filter-Markov chain Monte Carlo method / Hongxiang Yan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 11 (November 2015)PermalinkProvenance capture and use in a satellite data processing pipeline / Scott Jensen in IEEE Transactions on geoscience and remote sensing, vol 51 n° 11 (November 2013)PermalinkMulti-sensor model-data fusion for estimation of hydrologic and energy flux parameters / L. Renzullo in Remote sensing of environment, vol 112 n° 4 (15/04/2008)PermalinkAssessment of EOS aqua AMSR-E artic sea ice concentrations using Landsat-7 and airborne microwave imagery / D.J. Cavalieri in IEEE Transactions on geoscience and remote sensing, vol 44 n° 11 Tome 1 (November 2006)PermalinkMarch 2003 EOS Aqua AMSR-E Arctic Sea Ice Field Campaign / D.J. Cavalieri in IEEE Transactions on geoscience and remote sensing, vol 44 n° 11 Tome 1 (November 2006)PermalinkSoil moisture mapping and AMSR-E validation using the PSR in SMEX02 / R. Bindlish in Remote sensing of environment, vol 103 n° 2 (30/07/2006)PermalinkEstimating accuracy in optimal deconvolution of synthetic AMSR-E observations / A.S. Limaye in Remote sensing of environment, vol 100 n° 1 (15/01/2006)PermalinkNOAA operational hydrological products derived from the Advanced Microwave Sounding Unit / R.R. Ferraro in IEEE Transactions on geoscience and remote sensing, vol 43 n° 5 (May 2005)Permalink