Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Afrique (géographie politique) > Mozambique
MozambiqueVoir aussi |
Documents disponibles dans cette catégorie (12)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping / Sandro Martinis in Remote sensing of environment, vol 278 (September 2022)
[article]
Titre : Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping Type de document : Article/Communication Auteurs : Sandro Martinis, Auteur ; Sandro Groth, Auteur ; Marc Wieland, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113077 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Allemagne
[Termes IGN] Australie
[Termes IGN] carte thématique
[Termes IGN] fusion d'images
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] Mozambique
[Termes IGN] prévention des risques
[Termes IGN] série temporelle
[Termes IGN] Soudan
[Termes IGN] surveillance hydrologique
[Termes IGN] variation saisonnière
[Termes IGN] zone à risqueRésumé : (auteur) Satellite-based flood mapping has become an important part of disaster response. In order to accurately distinguish flood inundation from normally present conditions, up-to-date, high-resolution information on the seasonal water cover is crucial. This information is usually neglected in disaster management, which may result in a non-reliable representation of the flood extent, mainly in regions with highly dynamic hydrological conditions. In this study, we present a fully automated method to generate a global reference water product specifically designed for the use in global flood mapping applications based on high resolution Earth Observation data. The proposed methodology combines existing processing pipelines for flood detection based on Sentinel-1/2 data and aggregates permanent as well as seasonal water masks over an adjustable reference time period. The water masks are primarily based on the analysis of Sentinel-2 data and are complemented by Sentinel-1-based information in optical data scarce regions. First results are demonstrated in five selected study areas (Australia, Germany, India, Mozambique, and Sudan), distributed across different climate zones and are systematically compared with external products. Further, the proposed product is exemplary applied to three real flood events in order to evaluate the impact of the used reference water mask on the derived flood extent. Results show, that it is possible to generate a consistent reference water product at 10–20 m spatial resolution, that is more suitable for the use in rapid disaster response than previous masks. The proposed multi-sensor approach is capable of producing reasonable results, even if only few or no information from optical data is available. Further it becomes clear, that the consideration of seasonality of water bodies, especially in regions with highly dynamic hydrological and climatic conditions, reduces potential over-estimation of the inundation extent and gives a more reliable picture on flood-affected areas. Numéro de notice : A2022-467 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113077 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113077 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100801
in Remote sensing of environment > vol 278 (September 2022) . - n° 113077[article]Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 / Dimitris Poursanidis in Remote sensing in ecology and conservation, vol 7 n° 2 (June 2021)
[article]
Titre : Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 Type de document : Article/Communication Auteurs : Dimitris Poursanidis, Auteur ; Dimosthenis Traganos, Auteur ; Luisa Teixeira, Auteur ; Aurélie Shapiro, Auteur ; Lara Muaves, Auteur Année de publication : 2021 Article en page(s) : pp 275 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] écosystème
[Termes IGN] Google Earth Engine
[Termes IGN] habitat (nature)
[Termes IGN] image Sentinel-MSI
[Termes IGN] Mozambique
[Termes IGN] récif corallien
[Termes IGN] réserve naturelle
[Termes IGN] surveillance écologiqueRésumé : (auteur) The lack of detailed spatial information on coastal resources, notably shallow water coral reefs and associated benthic habitats, impedes our ability to protect and manage them in the face of global climate change and anthropogenic impacts. Here, we develop a semi-automated workflow in the cloud that uses freely available Sentinel-2 data from the European Space Agency (ESA) Copernicus programme to derive information on near-shore coral reef habitats in the Quirimbas National Park (QNP), a recently declared biosphere reserve in northern Mozambique. We use an end-to-end cloud-based framework within the Google Earth Engine cloud geospatial platform to process imagery from raw pixels to cloud-free composites which are corrected for glint and surface artefacts, water column and derived estimated depth and then classified into four benthic habitats. Using independent training and validation data, we apply three supervised classification algorithms: random forests (RF), support vector machine (SVM) and classification and regression trees (CART). Our results show that random forests are the most accurate supervised algorithm with over 82% overall accuracy. We mapped over 105 000 ha of shallow water habitat inside the protected area, of which 18% are dominated by coral and hardbottom; 27.5% are seagrass and submerged aquatic vegetation and another 23.4% are soft and sandy substrates, and the remaining area is optically deep water. We employ satellite-derived bathymetry to assess slope, bathymetric position, rugosity and underwater topography of these habitats. Finally, a spectral unmixing model provides further sub-pixel–level information of habitats with the potential to monitor changes over time. This effort provides the first, consistent and repeatable and also scalable coastal information system for an east African tropical marine protected area, which hosts shallow-water ecosystems which are of great significance to local communities and building resilience towards climate change. Numéro de notice : A2021-733 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1002/rse2.187 Date de publication en ligne : 29/11/2020 En ligne : https://doi.org/10.1002/rse2.187 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98679
in Remote sensing in ecology and conservation > vol 7 n° 2 (June 2021) . - pp 275 - 291[article]Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique / Hao Li in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
[article]
Titre : Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique Type de document : Article/Communication Auteurs : Hao Li, Auteur ; Benjamin Herfort, Auteur ; Wei Huang, Auteur Année de publication : 2020 Article en page(s) : pp 41-51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] carte sanitaire
[Termes IGN] cartographie collaborative
[Termes IGN] données localisées des bénévoles
[Termes IGN] géographie sociale
[Termes IGN] inventaire du bâti
[Termes IGN] Mozambique
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des données
[Termes IGN] TwitterRésumé : (auteur) Accurate and detailed geographical information digitizing human activity patterns plays an essential role in response to natural disasters. Volunteered geographical information, in particular OpenStreetMap (OSM), shows great potential in providing the knowledge of human settlements to support humanitarian aid, while the availability and quality of OSM remains a major concern. The majority of existing works in assessing OSM data quality focus on either extrinsic or intrinsic analysis, which is insufficient to fulfill the humanitarian mapping scenario to a certain degree. This paper aims to explore OSM missing built-up areas from an integrative perspective of social sensing and remote sensing. First, applying hierarchical DBSCAN clustering algorithm, the clusters of geo-tagged tweets are generated as proxies of human active regions. Then a deep learning based model fine-tuned on existing OSM data is proposed to further map the missing built-up areas. Hit by Cyclone Idai and Kenneth in 2019, the Republic of Mozambique is selected as the study area to evaluate the proposed method at a national scale. As a result, 13 OSM missing built-up areas are identified and mapped with an over 90% overall accuracy, being competitive compared to state-of-the-art products, which confirms the effectiveness of the proposed method. Numéro de notice : A2020-350 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.007 Date de publication en ligne : 07/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95233
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 41-51[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A cyber-enabled spatial decision support system to inventory mangroves in Mozambique: coupling scientific workflows and cloud computing / Wenwu Tang in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
[article]
Titre : A cyber-enabled spatial decision support system to inventory mangroves in Mozambique: coupling scientific workflows and cloud computing Type de document : Article/Communication Auteurs : Wenwu Tang, Auteur ; Wenpeng Feng, Auteur ; Meijuan Jia, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 907 - 938 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] informatique en nuage
[Termes IGN] inventaire de la végétation
[Termes IGN] lever des détails
[Termes IGN] mangrove
[Termes IGN] modélisation
[Termes IGN] Mozambique
[Termes IGN] synergiciel
[Termes IGN] système d'aide à la décision
[Termes IGN] Zambèze (fleuve)
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Mangroves are an important terrestrial carbon reservoir with numerous ecosystem services. Yet, it is difficult to inventory mangroves because of their low accessibility. A sampling approach that produces accurate assessment while maximizing logistical integrity of inventory operation is often required. Spatial decision support systems (SDSSs) provide support for integrating such a sampling design of fieldwork with operational considerations and evaluation of alternative scenarios. However, this fieldwork design driven by SDSS is often computationally intensive and repetitive. In this study, we develop a cyber-enabled SDSS framework to facilitate the computationally challenging fieldwork design that requires the efficacious selection of base camps and plots for the inventory of mangroves. Our study area is the Zambezi River Delta, Mozambique. Cyber-enabled capabilities, including scientific workflows and cloud computing, are integrated with the SDSS. Scientific workflows enable the automation of data and modeling tasks in the SDSS. Cloud computing offers on-demand computational support for interoperation among stakeholders for collaborative scenario evaluation for the fieldwork design of mangrove inventory. Further, this framework allows for harnessing high-performance computing capabilities for accelerating the fieldwork design. The cyber-enabled framework provides significant merits in terms of effective coordination among science and logistical teams, assurance of meeting inventory objectives, and an objective basis to collectively and efficaciously evaluate alternative scenarios. Numéro de notice : A2017-237 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1250900 En ligne : http://dx.doi.org/10.1080/13658816.2016.1250900 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85171
in International journal of geographical information science IJGIS > vol 31 n° 5-6 (May-June 2017) . - pp 907 - 938[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2017031 RAB Revue Centre de documentation En réserve L003 Disponible High-resolution forest canopy height estimation in an African blue carbon ecosystem / David Lagomasino in Remote sensing in ecology and conservation, vol 1 n° 1 (October 2015)
[article]
Titre : High-resolution forest canopy height estimation in an African blue carbon ecosystem Type de document : Article/Communication Auteurs : David Lagomasino, Auteur ; Temilola Fatoyinbo, Auteur ; Seung-Kuk Lee, Auteur ; Marc Simard, Auteur Année de publication : 2015 Article en page(s) : pp 51 - 60 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse
[Termes IGN] données localisées 3D
[Termes IGN] estimation statistique
[Termes IGN] hauteur des arbres
[Termes IGN] mangrove
[Termes IGN] MNS SRTM
[Termes IGN] MozambiqueRésumé : (auteur) Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereo-photogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications. Numéro de notice : A2015--101 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.3 En ligne : http://doi.org/10.1002/rse2.3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87170
in Remote sensing in ecology and conservation > vol 1 n° 1 (October 2015) . - pp 51 - 60[article]Documents numériques
en open access
High-resolution forest canopy height estimation - pdf éditeurAdobe Acrobat PDF Développement d'outils et de méthodes pour l'estimation de la qualité des résultats de classification / Zhour Najoui (2013)PermalinkUnconventional development of a cadastre / C.T.G. Trindade in GIM international, vol 19 n° 2 (February 2005)PermalinkFire detection using data from the NOAA-N satellites / M. Matson in International Journal of Remote Sensing IJRS, vol 8 n° 7 (July 1987)PermalinkThe rose-colored map / C.E. Nowel (1982)PermalinkAnnuaire des pays de l'océan Indien, vol 2. 1975 / Louis Favoreu (1977)PermalinkJambo / O. Strandberg (1955)PermalinkNouvelle géographie universelle / Elisée Reclus (1888)Permalink