Descripteur
Documents disponibles dans cette catégorie (904)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Titre : Cartographier l'anthropocène 2024 : Altas IGN - A l'ère de l'intelligence artificielle Type de document : Atlas/Carte Auteurs : IGN, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2024 Importance : 90 p. Format : 31 x 21,5 cm Langues : Français (fre) Descripteur : [Vedettes matières IGN] Environnement
[Vedettes matières IGN] Intelligence artificielle
[Vedettes matières IGN] Urbanisme
[Termes IGN] agriculture
[Termes IGN] cartographie
[Termes IGN] énergie
[Termes IGN] forêt
[Termes IGN] numérisation
[Termes IGN] risque environnementalIndex. décimale : 42.40 Histoire IGN Résumé : « Can machines think ?* »
Lorsqu’en 1950 Alan Turing pose la question « les machines peuvent-elles penser ? », se doute-t-il que l’intelligence artificielle (IA), dont il sera l’un des pères fondateurs, nous permettra de remonter le temps en retraçant l’évolution de l’occupation des sols ? Imagine-t-il que l’IA permettra de suivre le changement climatique, de modéliser les risques et donc de mieux les anticiper ?
Dans cette nouvelle édition de l'Atlas « Cartographier l'anthropocène », découvrez comment l'IA est devenue indispensable au pilotage de la transition écologique et dans quelle mesure elle offre de nouvelles perspectives d’exploration et d’innovation.Numéro de notice : 24113 Affiliation des auteurs : IGN (2020- ) Thématique : BIODIVERSITE/FORET/GEOMATIQUE/IMAGERIE Nature : Atlas En ligne : https://www.ign.fr/publications-de-l-ign/institut/kiosque/publications/atlas_ant [...] Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103781 Documents numériques
peut être téléchargé
Cartographier l'anthropocène 2024 : Altas IGN - A l'ère de l'intelligence artificielleAdobe Acrobat PDF Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks / Sina Mohammadi in ISPRS Journal of photogrammetry and remote sensing, vol 198 (April 2023)
[article]
Titre : Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks Type de document : Article/Communication Auteurs : Sina Mohammadi, Auteur ; Mariana Belgiu, Auteur ; Alfred Stein, Auteur Année de publication : 2023 Article en page(s) : pp 272 - 283 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] carte de la végétation
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] cultures
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelleRésumé : (auteur) Deep learning methods have achieved promising results in crop mapping using satellite image time series. A challenge still remains on how to better learn discriminative feature representations to detect crop types when the model is applied to unseen data. To address this challenge and reveal the importance of proper supervision of deep neural networks in improving performance, we propose to supervise intermediate layers of a designed 3D Fully Convolutional Neural Network (FCN) by employing two middle supervision methods: Cross-entropy loss Middle Supervision (CE-MidS) and a novel middle supervision method, namely Supervised Contrastive loss Middle Supervision (SupCon-MidS). This method pulls together features belonging to the same class in embedding space, while pushing apart features from different classes. We demonstrate that SupCon-MidS enhances feature discrimination and clustering throughout the network, thereby improving the network performance. In addition, we employ two output supervision methods, namely F1 loss and Intersection Over Union (IOU) loss. Our experiments on identifying corn, soybean, and the class Other from Landsat image time series in the U.S. corn belt show that the best set-up of our method, namely IOU+SupCon-MidS, is able to outperform the state-of-the-art methods by
scores of 3.5% and 0.5% on average when testing its accuracy across a different year (local test) and different regions (spatial test), respectively. Further, adding SupCon-MidS to the output supervision methods improves
scores by 1.2% and 7.6% on average in local and spatial tests, respectively. We conclude that proper supervision of deep neural networks plays a significant role in improving crop mapping performance. The code and data are available at: https://github.com/Sina-Mohammadi/CropSupervision.Numéro de notice : A2023-203 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2023.03.007 Date de publication en ligne : 29/03/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.03.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103105
in ISPRS Journal of photogrammetry and remote sensing > vol 198 (April 2023) . - pp 272 - 283[article]A GIS-based model for automated land suitability assessment for main crops in north-western desert of Egypt (case study: south of Al-Dabaa Corridor) / Adel Shalaby in Applied geomatics, vol 15 n° 1 (March 2023)
[article]
Titre : A GIS-based model for automated land suitability assessment for main crops in north-western desert of Egypt (case study: south of Al-Dabaa Corridor) Type de document : Article/Communication Auteurs : Adel Shalaby, Auteur ; Hossam Khedr, Auteur ; Ehab Youssef, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 15 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cultures
[Termes IGN] désert
[Termes IGN] Egypte
[Termes IGN] production agricole
[Termes IGN] système d'information géographique
[Termes IGN] utilisation du solRésumé : (auteur) The ever-increasing population causes huge pressure on the areas already inhabited and causes a decrease in an area per capita. This fact necessitates an essential demand for evaluating and classifying the soil according to its agricultural productivity for different crops. This research aimed to evaluate lands which proposed to use in the agricultural field in the south of Al-Dabaa Corridor based on remote sensed data and GIS techniques. Moreover, the future optimum agricultural use planning will be projected based on the land assessments in the study area. Land suitability was evaluated using ALES-arid software for six crops. It was found that 74% of the study area was suitable for one fruit crop, date palm, and about 77.3% for one crop, alfalfa, and also suitable for one vegetable crop, tomato, by 77.1%. Furthermore, it was found that the study area was moderately suitable for other two crops, faba bean and maize (72.7 and 67.8%), and one fruit crop, citrus (70.1%). On the other hand, it was found that the characteristics that most affected the suitability class of fruit crops were soil salinity, soil depth, ESP, slope, and coarse texture. Finally, the study area should go under major reclamation process (removal of the excess salts and improvement of the drainage conditions) in order to obtain the highest production. Numéro de notice : A2023-217 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s12518-022-00474-8 Date de publication en ligne : 30/11/2022 En ligne : https://doi.org/10.1007/s12518-022-00474-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103149
in Applied geomatics > vol 15 n° 1 (March 2023) . - pp 15 - 28[article]Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data / Thuong V. Tran in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data Type de document : Article/Communication Auteurs : Thuong V. Tran, Auteur ; David Bruce, Auteur ; Cho-Ying Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spectrale
[Termes IGN] changement d'occupation du sol
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] parcelle agricole
[Termes IGN] sécheresse
[Termes IGN] série temporelle
[Termes IGN] surveillance agricole
[Termes IGN] variation temporelle
[Termes IGN] Viet NamRésumé : (auteur) Using a multivariate drought index that incorporates important environmental variables and is suitable for a specific geographical region is essential to fully understanding the pattern and impacts of drought severity. This study applied feature scaling algorithms to MODIS time-series imagery to develop an integrated Multivariate Drought Index (iMDI). The iMDI incorporates the vegetation condition index (VCI), the temperature condition index (TCI), and the evaporative stress index (ESI). The 54,474 km2 Vietnamese Central Highlands region, which has been significantly affected by drought severity for several decades, was selected as a test site to assess the feasibility of the iMDI. Spearman correlation between the iMDI and other commonly used spectral drought indices (i.e. the Drought Severity Index (DSI–12) and the annual Vegetation Health Index (VHI–12)) and ground-based drought indices (i.e. the Standardized Precipitation Index (SPI–12) and the Reconnaissance Drought Index (RDI–12)) was employed to evaluate performance of the proposed drought index. Pixel-based linear regression together with clustering models of the iMDI time-series was applied to characterize the spatiotemporal pattern of drought from 2001 to 2020. In addition, a persistent area of LULC types (i.e. forests, croplands, and shrubland) during the 2001–2020 period was used to understand drought variation in relation to LULC. Results suggested that the iMDI outperformed the other spectral drought indices (r > 0.6; p Numéro de notice : A2023-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163070 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163070 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102329
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163070[article]Geospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image / Taposh Mollick in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)
[article]
Titre : Geospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image Type de document : Article/Communication Auteurs : Taposh Mollick, Auteur ; MD Golam Azam, Auteur ; Sabrina Karim, Auteur Année de publication : 2023 Article en page(s) : n° 100859 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] Bangladesh
[Termes IGN] classification non dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification pixellaire
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] occupation du sol
[Termes IGN] rendement agricole
[Termes IGN] segmentation d'image
[Termes IGN] utilisation du solRésumé : (auteur) Bangladesh is primarily an agricultural country where technological advancement in the agricultural sector can ensure the acceleration of economic growth and ensure long-term food security. This research was conducted in the south-western coastal zone of Bangladesh, where rice is the main crop and other crops are also grown. Land use and land cover (LULC) classification using remote sensing techniques such as the use of satellite or unmanned aerial vehicle (UAV) images can forecast the crop yield and can also provide information on weeds, nutrient deficiencies, diseases, etc. to monitor and treat the crops. Depending on the reflectance received by sensors, remotely sensed images store a digital number (DN) for each pixel. Traditionally, these pixel values have been used to separate clusters and classify various objects. However, it frequently generates a lot of discontinuity in a particular land cover, resulting in small objects within a land cover that provide poor image classification output. It is called the salt-and-pepper effect. In order to classify land cover based on texture, shape, and neighbors, Pixel-Based Image Analysis (PBIA) and Object-Based Image Analysis (OBIA) methods use digital image classification algorithms like Maximum Likelihood (ML), K-Nearest Neighbors (KNN), k-means clustering algorithm, etc. to smooth this discontinuity. The authors evaluated the accuracy of both the PBIA and OBIA approaches by classifying the land cover of an agricultural field, taking into consideration the development of UAV technology and enhanced image resolution. For classifying multispectral UAV images, we used the KNN machine learning algorithm for object-based supervised image classification and Maximum Likelihood (ML) classification (parametric) for pixel-based supervised image classification. Whereas, for unsupervised classification using pixels, we used the K-means clustering technique. For image analysis, Near-infrared (NIR), Red (R), Green (G), and Blue (B) bands of a high-resolution ground sampling distance (GSD) 0.0125m UAV image was used in this research work. The study found that OBIA was 21% more accurate than PBIA, indicating 94.9% overall accuracy. In terms of Kappa statistics, OBIA was 27% more accurate than PBIA, indicating Kappa statistics accuracy of 93.4%. It indicates that OBIA provides better classification performance when compared to PBIA for the classification of high-resolution UAV images. This study found that by suggesting OBIA for more accurate identification of types of crops and land cover, which will help crop management, agricultural monitoring, and crop yield forecasting be more effective. Numéro de notice : A2023-021 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rsase.2022.100859 Date de publication en ligne : 22/11/2022 En ligne : https://doi.org/10.1016/j.rsase.2022.100859 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102224
in Remote Sensing Applications: Society and Environment, RSASE > vol 29 (January 2023) . - n° 100859[article]GIS-based land-use suitability analysis for urban agriculture development based on pollution distributions / Fatemeh Kazemi in Land use policy, vol 123 (December 2022)PermalinkVine canopy reconstruction and assessment with terrestrial Lidar and aerial imaging / Igor Petrovic in Remote sensing, vol 14 n° 22 (November-2 2022)PermalinkHabitats, agricultural practices, and population dynamics of a threatened species: The European turtle dove in France / Christophe Sauser in Biological Conservation, vol 274 (octobre 2022)PermalinkComparison of deep neural networks in detecting field grapevine diseases using transfer learning / Antonios Morellos in Remote sensing, vol 14 n° 18 (September-2 2022)PermalinkEstimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2 / Akiko Elders in Remote Sensing Applications: Society and Environment, RSASE, Vol 27 (August 2022)PermalinkAnalysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process / Ahmad Al-Hanbali in Geo-spatial Information Science, vol 25 n° 2 ([01/06/2022])PermalinkPrecise crop classification of hyperspectral images using multi-branch feature fusion and dilation-based MLP / Haibin Wu in Remote sensing, vol 14 n° 11 (June-1 2022)PermalinkSpatial-temporal variation of satellite-based gross primary production estimation in wheat-maize rotation area during 2000–2015 / Wenquan Xie in Geocarto international, vol 37 n° 9 ([15/05/2022])PermalinkAlternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation / Toshihiro Sakamoto in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)PermalinkCrop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information / Murali Krishna Gumma in Geocarto international, vol 37 n° 7 ([15/04/2022])Permalink