Descripteur
Documents disponibles dans cette catégorie (944)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data / Sugandh Chauhan in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data Type de document : Article/Communication Auteurs : Sugandh Chauhan, Auteur ; Roshanak Darvishzadeh, Auteur ; Mirco Boschetti, Auteur ; Andrew Nelson, Auteur Année de publication : 2020 Article en page(s) : pp 138 - 151 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agrégation de données
[Termes IGN] analyse diachronique
[Termes IGN] analyse discriminante
[Termes IGN] blé (céréale)
[Termes IGN] courbure
[Termes IGN] gestion prévisionnelle
[Termes IGN] image Radarsat
[Termes IGN] image Sentinel-SAR
[Termes IGN] Italie
[Termes IGN] matrice de confusion
[Termes IGN] méthode des moindres carrés
[Termes IGN] rendement agricole
[Termes IGN] surveillance agricoleRésumé : (auteur) Crop lodging - the bending of crop stems from their upright position or the failure of root-soil anchorage systems - is a major yield-reducing factor in wheat and causes deterioration of grain quality. The severity of lodging can be measured by a lodging score (LS)- an index calculated from the crop angle of inclination (CAI) and crop lodged area (LA). LS is difficult and time consuming to measure manually meaning that information on lodging occurrence and severity is limited and sparse. Remote sensing-based estimates of LS can provide more timely, synoptic and reliable information on crop lodging across vast areas. This information could improve estimates of crop yield losses, inform insurance loss adjusters and influence management decisions for subsequent seasons. This research - conducted in the 600 ha wheat sown area in the Bonifiche Ferraresi farm, located in Jolanda di Savoia, Ferrara, Italy - evaluated the performance of RADARSAT-2 and Sentinel-1 data to discriminate and classify lodging severity based on field measured LS. We measured temporal crop status characteristics related to lodging (e.g. lodged area, CAI, crop height) and collected relevant meteorological data (wind speed and rainfall) throughout May-June 2018. These field measurements were used to distinguish healthy (He) wheat from lodged wheat with different degrees of lodging severity (moderate, severe and very severe). We acquired multi-incidence angle (FQ8-27° and FQ21-41°) RADARSAT-2 and Sentinel-1 (40°) images and derived multiple metrics from them to discriminate and classify lodging severity. As a part of our data exploration, we performed a correlation analysis between the image-based metrics and LS. Next, a multi-temporal discriminant analysis approach, including a partial least squares (PLS-DA) method, was developed to classify lodging severities. We used the area under the curve-receiver operating characteristics (AUC-ROC) and confusion matrices to evaluate the accuracy of the PLS-DA classification models. Results show that (1) volume scattering components were highly correlated with LS at low incidence angles while double and surface scattering was more prevalent at high incidence angles; (2) lodging severity was best classified using low incidence angle R-FQ8 data (overall accuracy 72%) and (3) the Sentinel-1 data-based classification model was able to correctly identify 60% of the lodging severity cases in the study site. The results from this first study on classifying lodging severity using satellite-based SAR platforms suggests that SAR-based metrics can capture a substantial proportion of the observed variation in lodging severity, which is important in the context of operational crop lodging assessment in particular, and sustainable agriculture in general. Numéro de notice : A2020-276 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.012 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.012 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95087
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 138 - 151[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Profitability of growing Scots pine on cutaway peatlands / Lasse Aro in Silva fennica, vol 54 n° 3 (June 2020)
[article]
Titre : Profitability of growing Scots pine on cutaway peatlands Type de document : Article/Communication Auteurs : Lasse Aro, Auteur ; Anssi Ahtikoski, Auteur ; Jyrki Hytönen, Auteur Année de publication : 2020 Article en page(s) : 18 p. Langues : Anglais (eng) Descripteur : [Termes IGN] afforestation
[Termes IGN] boisement artificiel
[Termes IGN] économie forestière
[Termes IGN] engrais chimique
[Termes IGN] Finlande
[Termes IGN] gestion forestière
[Termes IGN] Pinus sylvestris
[Termes IGN] rendement
[Termes IGN] tourbe
[Termes IGN] tourbière
[Vedettes matières IGN] SylvicultureRésumé : (auteur) A major after-use option for former peat harvesting areas has been afforestation. The profitability of afforestation with Scots pine trees (Pinus sylvestris L.) was studied in two 31–32-year old experiments in southern and northern Finland. The stands were established by seeding and planting, and various fertilization treatments and drainage intensities were tested. The financial performance for each plot was assessed in three steps. First, the costs occurred during the measurement time were summed up according to their present value. Then, for the rest of the rotation (i.e., from the age of 31/32 onwards) the stand management was optimized in order to maximize the net present value (MaxNPV). Finally, bare land values (BLVs) were calculated by summing up the present value of costs and the MaxNPV and converting the sum of the series into infinity. The afforestation method did not affect the mean annual increment (MAI; 9.2–9.5 m3 ha–1 a–1)in the southern experiment. In the northern experiment the afforestation method, ditch spacing and fertilization had significant effects on the MAI of the stands. The average MAI of the planted pines was 8.9 m3 ha–1 a–1, and for seeded pines it was 7.5 m3 ha–1 a–1. The BLV at an interest rate of 3% was positive for all stands in both regions. In the northern region afforestation method, ditch spacing and fertilization also had a significant effect on the BLV. When the interest rate was 5%, almost two thirds of the stands had a negative BLV in both regions. Numéro de notice : A2020-648 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.14214/sf.10273 Date de publication en ligne : 24/06/2020 En ligne : https://doi.org/10.14214/sf.10273 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96078
in Silva fennica > vol 54 n° 3 (June 2020) . - 18 p.[article]Wheat leaf area index retrieval using RISAT-1 hybrid polarized SAR data / Thota Sivasankar in Geocarto international, Vol 35 n° 8 ([01/06/2020])
[article]
Titre : Wheat leaf area index retrieval using RISAT-1 hybrid polarized SAR data Type de document : Article/Communication Auteurs : Thota Sivasankar, Auteur ; Dheeraj Kumar, Auteur ; Hari Shanker Srivastava, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 905 - 915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande C
[Termes IGN] blé (céréale)
[Termes IGN] coefficient de corrélation
[Termes IGN] image radar moirée
[Termes IGN] image Risat-1
[Termes IGN] indice foliaire
[Termes IGN] polarisation
[Termes IGN] régression non linéaire
[Termes IGN] rétrodiffusion
[Termes IGN] séparateur à vaste marge
[Termes IGN] surveillance de la végétationRésumé : (auteur) Leaf Area Index (LAI) is a key parameter to characterize the canopy–atmosphere interface, where most of the energy fluxes exchange. Space-borne satellite images have shown their relevance for various applications including LAI retrieval over large areas. Although optical data have been used for this purpose in previous studies, the constraints to acquire optical data during extreme weather conditions due to the presence of clouds, haze, smoke etc. hinders its use for uninterrupted monitoring. This study aims to analyze the relationships of C-band RISAT-1 hybrid polarized SAR data (σ˚RH and σ˚RV) with wheat LAI. The results have shown the correlation coefficient (|r|) of 0.57 and 0.73 for RH and RV backscatter, respectively, using non-linear regression approach. It is also observed that the accuracy of LAI retrieval has been significantly improved with |r| and RMSE of 0.81 and 0.54 (m2/m2), respectively, by considering both RH and RV backscatter as inputs for support vector machine-based model. Numéro de notice : A2020-341 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10106049.2019.1566404 Date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566404 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95219
in Geocarto international > Vol 35 n° 8 [01/06/2020] . - pp 905 - 915[article]Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry / Maria Luz Gil-Docampo in Geocarto international, vol 35 n° 7 ([15/05/2020])
[article]
Titre : Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry Type de document : Article/Communication Auteurs : Maria Luz Gil-Docampo, Auteur ; Marcos Arza-García, Auteur ; Juan Ortiz-Sanz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 687 - 699 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] acquisition d'images
[Termes IGN] agronomie
[Termes IGN] biomasse
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] photogrammétrie aérienne
[Termes IGN] sol arable
[Termes IGN] structure-from-motionRésumé : (Auteur) Methods of estimating the total amount of above-ground biomass (AGB) in crop fields are generally based on labourious, random, and destructive in situ sampling. This study proposes a methodology for estimating herbaceous crop biomass using conventional optical cameras and structure from motion (SfM) photogrammetry. The proposed method is based on the determination of volumes according to the difference between a digital terrain model (DTM) and digital surface model (DSM) of vegetative cover. A density factor was calibrated based on a subset of destructive random samples to relate the volume and biomass and efficiently quantify the total AGB. In all cases, RMSE Z values less than 0.23 m were obtained for the DTM-DSM coupling. Biomass field data confirmed the goodness of fit of the yield-biomass estimation (R2=0.88 and 1.12 kg/ha) mainly in plots with uniform vegetation coverage. Furthermore, the method was demonstrated to be scalable to multiple platform types and sensors. Numéro de notice : A2020-186 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1552322 Date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1552322 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94993
in Geocarto international > vol 35 n° 7 [15/05/2020] . - pp 687 - 699[article]Soil moisture estimation with SVR and data augmentation based on alpha approximation method / Wei Xu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : Soil moisture estimation with SVR and data augmentation based on alpha approximation method Type de document : Article/Communication Auteurs : Wei Xu, Auteur ; Zhaoxu Zhang, Auteur ; Qiming Qin, Auteur Année de publication : 2020 Article en page(s) : pp 3190 - 3201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] approximation
[Termes IGN] erreur moyenne quadratique
[Termes IGN] humidité du sol
[Termes IGN] image ALOS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] irrigation
[Termes IGN] modèle de régression
[Termes IGN] surveillance agricoleRésumé : (auteur) Soil moisture content is an important parameter in hydrological, meteorological, and agricultural applications. Balenzano et al. proposed the alpha approximation method in 2011 for solving some complex issues during the retrieval of soil moisture over agricultural crops with synthetic aperture radar data. However, determining the constraints and solving the underdetermined system of equations in this method add new challenges. Considering the questions of constraints and underdetermined system of equations, the alpha approximation method is used to augment the measured data, and can avoid solving the underdetermined system of equations with constraints directly. Then, these data are applied in a support vector regression machine for soil moisture estimation. It is found that when an optimal model is determined, the method proposed in this article is superior to the direct use of the alpha approximation method, and the root-mean-squared error (RMSE) decreased from 0.0775 to 0.0339 and R 2 increased from 0.0467 to 0.6491. In addition, the method obtained a good result from a data set collected that included a different growing period of crops by changing the standardized method from StandardScaler to Scale , where the RMSE is 0.0501 and R 2 is 0.3204. This indicates the good generalization capability of this method. In conclusion, the proposed method solves the two questions effectively and provides a potential way for long-time or large-scale soil moisture monitoring with much less in situ measurements. Numéro de notice : A2020-235 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950321 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950321 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94981
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3190 - 3201[article]La transition agro-écologique: une politique de développement durable comme les autres ? / Mehdi Arrignon in VertigO, vol 20 n° 1 (mai 2020)PermalinkAbove-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging / Bo Li in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)PermalinkConterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database / Collin Homer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)PermalinkSize-class structure of the forests of Finland during 1921–2013: a recovery from centuries of exploitation, guided by forest policies / Helena M. Henttonen in European Journal of Forest Research, vol 139 n° 2 (April 2020)PermalinkRadar Vegetation Index for assessing cotton crop condition using RISAT-1 data / Dipanwita Haldar in Geocarto international, vol 35 n° 4 ([15/03/2020])PermalinkIntegrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images / Wen Dai in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)PermalinkIntegration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)PermalinkEstimating wheat yields in Australia using climate records, satellite image time series and machine learning methods / Elisa Kamir in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)PermalinkMulti-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi / Brad G. Peter in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)PermalinkOptimising drone flight planning for measuring horticultural tree crop structure / Yu-Hsuan Tu in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)Permalink