Descripteur
Documents disponibles dans cette catégorie (329)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)
[article]
Titre : A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data Type de document : Article/Communication Auteurs : Linhua Ma, Auteur ; Yuanlai Cui, Auteur ; Bo Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 159917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] Corée
[Termes IGN] données multisources
[Termes IGN] Etats-Unis
[Termes IGN] humidité du sol
[Termes IGN] image à haute résolution
[Termes IGN] image infrarouge
[Termes IGN] Italie
[Termes IGN] méthane
[Termes IGN] modélisation
[Termes IGN] réflectance du sol
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] variation saisonnièreRésumé : (auteur) Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738–0.848, RMSE ranges of 31.94–149.22 mg C/m2d and MBE ranges of −66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47–20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale. Numéro de notice : A2023-015 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.159917 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.159917 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102133
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 159917[article]
Titre : Cartographier l'anthropocène 2023 : Altas IGN - L'occupation des sols Type de document : Atlas/Carte Auteurs : IGN, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2023 Importance : 85 p. Format : 31 x 21,5 cm Langues : Français (fre) Descripteur : [Termes IGN] aménagement du territoire
[Termes IGN] forêt
[Termes IGN] géoportail
[Termes IGN] jumeau numérique
[Termes IGN] parcelle agricole
[Termes IGN] plan d'eau
[Termes IGN] prévention des risquesIndex. décimale : 42.40 Histoire IGN Numéro de notice : 24113 Affiliation des auteurs : IGN (2020- ) Thématique : BIODIVERSITE/FORET/GEOMATIQUE/IMAGERIE Nature : Atlas En ligne : https://www.ign.fr/publications-de-l-ign/institut/kiosque/publications/atlas_ant [...] Format de la ressource électronique : URL Sommaire Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103619 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 24113-01 ALTAS IGN Atlas / Beau livre Centre de documentation En réserve L003 Disponible Documents numériques
peut être téléchargé
Antropocène 2023Adobe Acrobat PDF Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data / Thuong V. Tran in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data Type de document : Article/Communication Auteurs : Thuong V. Tran, Auteur ; David Bruce, Auteur ; Cho-Ying Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2163070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spectrale
[Termes IGN] changement d'occupation du sol
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] parcelle agricole
[Termes IGN] sécheresse
[Termes IGN] série temporelle
[Termes IGN] surveillance agricole
[Termes IGN] variation temporelle
[Termes IGN] Viet NamRésumé : (auteur) Using a multivariate drought index that incorporates important environmental variables and is suitable for a specific geographical region is essential to fully understanding the pattern and impacts of drought severity. This study applied feature scaling algorithms to MODIS time-series imagery to develop an integrated Multivariate Drought Index (iMDI). The iMDI incorporates the vegetation condition index (VCI), the temperature condition index (TCI), and the evaporative stress index (ESI). The 54,474 km2 Vietnamese Central Highlands region, which has been significantly affected by drought severity for several decades, was selected as a test site to assess the feasibility of the iMDI. Spearman correlation between the iMDI and other commonly used spectral drought indices (i.e. the Drought Severity Index (DSI–12) and the annual Vegetation Health Index (VHI–12)) and ground-based drought indices (i.e. the Standardized Precipitation Index (SPI–12) and the Reconnaissance Drought Index (RDI–12)) was employed to evaluate performance of the proposed drought index. Pixel-based linear regression together with clustering models of the iMDI time-series was applied to characterize the spatiotemporal pattern of drought from 2001 to 2020. In addition, a persistent area of LULC types (i.e. forests, croplands, and shrubland) during the 2001–2020 period was used to understand drought variation in relation to LULC. Results suggested that the iMDI outperformed the other spectral drought indices (r > 0.6; p Numéro de notice : A2023-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2163070 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2163070 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102329
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2163070[article]Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain / Arabinda Maiti in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain Type de document : Article/Communication Auteurs : Arabinda Maiti, Auteur ; Prasenjit Acharya, Auteur ; Srikanta Sannigrahi, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] Gange (fleuve)
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] mousson
[Termes IGN] plaine
[Termes IGN] rizièreRésumé : (auteur) We proposed a modification of the existing approach for mapping active paddy rice fields in monsoon-dominated areas. In the existing PPPM approach, LSWI higher than EVI at the transplantation stage enables the identification of rice fields. However, it fails to recognize the fields submerged later due to monsoon floods. In the proposed approach (IPPPM), the submerged fields, at the maximum greenness time, were excluded for better estimation. Sentinel–2A/2B time-series images were used for the year 2018 to map paddy rice over the Lower Gangetic Plain (LGP) using Google earth engine (GEE). The overall accuracy (OA) obtained from IPPPM was 85%. Further comparison with the statistical data reveals the IPPPM underestimates (slope (β1) = 0.77) the total reported paddy rice area, though R2 remains close to 0.9. The findings provide a basis for near real-time mapping of active paddy rice areas for addressing the issues of production and food security. Numéro de notice : A2022-924 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2022.2032396 En ligne : https://doi.org/10.1080/10106049.2022.2032396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99963
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]
Titre : Structured learning of geospatial data Type de document : Thèse/HDR Auteurs : Loïc Landrieu , Auteur Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2023 Importance : 179 p. Format : 21 x 30 cm Note générale : Bibliographie
Habilitation à Diriger des Recherches délivrée par l'Université Gustave Eiffel, Spécialité "Sciences et Technologies de l'Information Géographique"Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme Cut Pursuit
[Termes IGN] apprentissage automatique
[Termes IGN] carte agricole
[Termes IGN] graphe
[Termes IGN] lasergrammétrie
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation sémantique
[Termes IGN] série temporelle
[Termes IGN] vision par ordinateurRésumé : (auteur) This manuscript presents an overview of my work in the field of geospatial machine learning, a rapidly growing interdisciplinary field that poses many methodological challenges and has a wide range of impactful applications. Throughout my research, I have focused on developing bespoke approaches that leverage the unique properties of geospatial data to create more efficient, precise, and parsimonious models. This manuscript is divided into four main chapters, each covering a different property of geospatial data structures that can be leveraged algorithmically. The first chapter presents a versatile mathematical framework formalizing the concept of spatial regularity with graphs. We propose an efficient algorithm that tackles a broad family of spatial problems and provides novel convergence guarantees and significant speed-ups compared to generic approaches. The second chapter introduces a deep learning method that extends the idea of exploiting graph regularity to the case of massive 3D point clouds. We simplify the task of large-scale semantic segmentation by formulating it as as a small graph labelling problem. Our compact models reach high precision at a fraction of the computational cost of other approaches. In the third chapter, we present a collection of methods designed to take advantage of the data structure inherited from 3D sensors. By considering the sensors’ structure, we develop powerful networks with state-of-the-art accuracy, latency, and robustness for various applications and data types. The last chapter dives into the real-life challenge of automated satellite time series analysis for crop mapping. Recognizing the difference between such data and standard formats used in computer vision, we propose novel and streamlined architectures that achieve unprecedented precision while remaining efficient and economical in memory and preprocessing. We also introduce the task of panoptic segmentation for satellite time series and an efficient architecture to solve this problem at scale. In summary, this manuscript argues that geospatial problems represent a challenging and impactful venue for evaluating the newest machine learning and vision methods and a fertile source of inspiration for designing novel approaches. Note de contenu : 1- Introduction
2- Exploiting graph regularity
3- Exploiting the spatial regularity of 3D data
4- Exploiting the structure of 3D sensors
5- Exploiting the structure of satellite time series
6- Perspectives
7- Curriculum vitaeNuméro de notice : 24107 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE Nature : HDR Note de thèse : HDR: Sciences et Technologies de l’Information Geographique : UGE : 2023 Organisme de stage : LASTIG (IGN) DOI : sans En ligne : https://hal.science/tel-04095452v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103248 Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)PermalinkMapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression / Haoyu Wang in Remote sensing of environment, vol 278 (September 2022)PermalinkEstimating crop type and yield of small holder fields in Burkina Faso using multi-day Sentinel-2 / Akiko Elders in Remote Sensing Applications: Society and Environment, RSASE, Vol 27 (August 2022)PermalinkPredicting vegetation stratum occupancy from airborne LiDAR data with deep learning / Ekaterina Kalinicheva in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)PermalinkAnalysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process / Ahmad Al-Hanbali in Geo-spatial Information Science, vol 25 n° 2 ([01/06/2022])PermalinkResearch on automatic identification method of terraces on the Loess plateau based on deep transfer learning / Mingge Yu in Remote sensing, vol 14 n° 10 (May-2 2022)PermalinkAlternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation / Toshihiro Sakamoto in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)PermalinkMulti-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)PermalinkCrop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information / Murali Krishna Gumma in Geocarto international, vol 37 n° 7 ([15/04/2022])PermalinkParcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data / Yanyan Wang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)Permalink