Descripteur
Documents disponibles dans cette catégorie (47)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic detection of thin oil films on water surfaces in ultraviolet imagery / Ming Xie in Photogrammetric record, vol 38 n° 181 (March 2023)
[article]
Titre : Automatic detection of thin oil films on water surfaces in ultraviolet imagery Type de document : Article/Communication Auteurs : Ming Xie, Auteur ; Xiurui Zhang, Auteur ; Ying Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] filtre optique
[Termes IGN] hydrocarbure
[Termes IGN] image AVIRIS
[Termes IGN] marée noire
[Termes IGN] niveau de gris (image)
[Termes IGN] rayonnement ultraviolet
[Termes IGN] segmentation d'image
[Termes IGN] seuillage binaire
[Termes IGN] surface de la merRésumé : (auteur) Among the various remote sensing technologies that have been applied to monitor oil spills on the sea surface, passive ultraviolet (UV) imaging is a controversial one that has raised some disputes in the community of oil spill remote sensing. As a result, the research and applications of oil spill detection using passive UV imaging have not been as developed as other methods. In order to clarify some existing questions on oil spill detection using passive UV remote sensing technology, this paper discusses the needs of thin oil film detection, examines the feasibility of thin oil film detection using passive UV imaging through field experiments under controlled conditions and validates it with the UV imagery derived from the airborne visible/infrared imaging spectrometer (AVIRIS) observation of the Deepwater Horizon oil spill. Two types of fully automatic models are designed to extract the thin oil films on the water surface: (1) a binary classification model based on an adaptive threshold; (2) an unsupervised image segmentation model based on image clustering and greyscale histogram analysis. The two models are tested on the UV imagery obtained through both field experiments and AVIRIS observations. The results indicate that the binary classification model can extract the thin oil films with reasonable accuracy under stable imaging conditions, while the unsupervised image clustering model can robustly detect the thin oil films at the cost of higher computational complexity. These results infer that passive UV imaging is an effective way to detect thin oil films and could be applied to provide early warning at the beginning stage of oil spills and reduce further damage. It may also be applied as a supplementary method for oil spill detection to achieve comprehensive oil spill monitoring. Numéro de notice : A2023-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12439 Date de publication en ligne : 09/02/2023 En ligne : https://doi.org/10.1111/phor.12439 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102866
in Photogrammetric record > vol 38 n° 181 (March 2023) . - pp 47 - 62[article]Adaptive edge preserving maps in Markov random fields for hyperspectral image classification / Chao Pan in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Adaptive edge preserving maps in Markov random fields for hyperspectral image classification Type de document : Article/Communication Auteurs : Chao Pan, Auteur ; Xiuping Jia, Auteur ; Jie Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8568 - 8583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation de contours
[Termes IGN] algorithme Graph-Cut
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classe d'objets
[Termes IGN] détection de contours
[Termes IGN] étiquette de classe
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] segmentation d'imageRésumé : (auteur) This article presents a novel adaptive edge preserving (aEP) scheme in Markov random fields (MRFs) for hyperspectral image (HSI) classification. MRF regularization usually suffered from over-smoothing at boundaries and insufficient refinement within class objects. This work divides and conquers this problem class-by-class, and integrates K ( K−1 )/2 ( K is the class number) aEP maps (aEPMs) in MRF model. Spatial label dependence measure (SLDM) is designed to estimate the interpixel label dependence for given spectral similarity measure. For each class pair, aEPM is optimized by maximizing the difference between intraclass and interclass SLDM. Then, aEPMs are integrated with multilevel logistic (MLL) model to regularize the raw pixelwise labeling obtained by spectral and spectral–spatial methods, respectively. The graph-cuts-based α β -swap algorithm is modified to optimize the designed energy function. Moreover, to evaluate the final refined results at edges and small details thoroughly, segmentation evaluation metrics are introduced. Experiments conducted on real HSI data denote the superiority of aEPMs in evaluation metrics and region consistency, especially in detail preservation. Numéro de notice : A2021-713 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3035642 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3035642 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98618
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8568 - 8583[article]Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])
[article]
Titre : Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification Type de document : Article/Communication Auteurs : Laxmi Narayana Eeti, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2021 Article en page(s) : pp 1820 - 1837 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] réseau neuronal profond
[Termes IGN] Rotation Forest classificationRésumé : (auteur) Decision tree-based Rotation Forest could generate satisfactory but lower classification accuracy for a given training sample set and image data, owing to the inherent disadvantages in decision trees, namely myopic, replication and fragmentation problem. To improve performance of Rotation Forest technique, we propose to utilize two-hidden-layered-feedforward neural network as base classifier instead of decision tree. We examine the classification performance of proposed model under two situations, namely when free network parameters are maintained the same across all ensemble components and otherwise. The proposed model, where each component is initialized with different pair of initial weights and bias, performs better than decision tree-based Rotation Forest on three different Hyperspectral sensor datasets – AVIRIS, ROSIS and Hyperion. Improvements in classification accuracy are above 2% and up to 3% depending upon dataset. Also, the proposed model achieves improvement in accuracy over Random Forest in the range 4.2–8.8%. Numéro de notice : A2021-581 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1678680 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/10106049.2019.1678680 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98193
in Geocarto international > vol 36 n° 16 [01/09/2021] . - pp 1820 - 1837[article]An incremental isomap method for hyperspectral dimensionality reduction and classification / Yi Ma in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)
[article]
Titre : An incremental isomap method for hyperspectral dimensionality reduction and classification Type de document : Article/Communication Auteurs : Yi Ma, Auteur ; Zezhong Zheng, Auteur ; Yutang Ma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 445 - 455 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] classification barycentrique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] échantillonnage de données
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] squelettisation
[Termes IGN] utilisation du solRésumé : (Auteur) Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We present in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature variation algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine. Numéro de notice : A2021-375 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.7.445 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.14358/PERS.87.7.445 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97829
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 6 (June 2021) . - pp 445 - 455[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021061 SL Revue Centre de documentation Revues en salle Disponible VNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada / Kathleen E. Johnson in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
[article]
Titre : VNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada Type de document : Article/Communication Auteurs : Kathleen E. Johnson, Auteur ; Krzysztof Koperski, Auteur Année de publication : 2020 Article en page(s) : pp 695 - 700 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie géologique
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image proche infrarouge
[Termes IGN] image Worldview
[Termes IGN] minéralogie
[Termes IGN] Nevada (Etats-Unis)
[Termes IGN] réalité de terrain
[Termes IGN] Short Waves InfraRedRésumé : (Auteur) Cuprite, Nevada, is a location well known for numerous studies of its hydrothermal mineralogy. This region has been used to validate geological interpretations of airborne hyperspectral imagery (AVIRIS HSI ), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER ) imagery, and most recently eight-band WorldView-3 shortwave infrared (SWIR ) imagery. WorldView-3 is a high-spatial-resolution commercial multispectral satellite sensor with eight visible-to-near-infrared (VNIR ) bands (0.42–1.04 μm) and eight SWIR bands (1.2–2.33 μm). We have applied mineral mapping techniques to all 16 bands to perform a geological analysis of the Cuprite, Nevada, location. Ground truth for the training and validation was derived from AVIRIS hyperspectral data and United States Geological Survey mineral spectral data for this location. We present the results of a supervised mineral-mapping classification applying a random-forest classifier. Our results show that with good ground truth, WorldView-3 SWIR + VNIR imagery produces an accurate geological assessment. Numéro de notice : A2020-709 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.11.695 Date de publication en ligne : 01/11/2020 En ligne : https://doi.org/10.14358/PERS.86.11.695 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96395
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 11 (November 2020) . - pp 695 - 700[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020111 SL Revue Centre de documentation Revues en salle Disponible Aqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy / Hrishikesh Kumar in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)PermalinkComparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)PermalinkLearning and transferring deep joint spectral–spatial features for hyperspectral classification / Jingxiang Yang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)PermalinkLearning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks / Shaohui Mei in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)PermalinkUniformity-based superpixel segmentation of hyperspectral images / Arun M. Saranathan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 3 (March 2016)PermalinkReal-time atmospheric correction of AVIRIS-NG imagery / Brian D. Bue in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)PermalinkSequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)PermalinkHyperspectral image classification using nearest feature line embedding approach / Yang-Lang Chang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 1 tome 1 (January 2014)PermalinkGeneralized composite kernel framework for hyperspectral image classification / J. Li in IEEE Transactions on geoscience and remote sensing, vol 51 n° 9 (September 2013)PermalinkSemisupervised self-learning for hyperspectral image classification / Immaculada Dopido in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)Permalink