Descripteur
Termes IGN > environnement > protection de l'environnement > patrimoine naturel
patrimoine naturelSynonyme(s)patrimoine environnemental aire naturelle (protection de l'environnement)Voir aussi |
Documents disponibles dans cette catégorie (322)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] cartographie écologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis Type de document : Article/Communication Auteurs : Haifa Tamiminia, Auteur ; Bahram Salehi, Auteur ; Masoud Mahdianpari, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse aérienne
[Termes IGN] boosting adapté
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification pixellaire
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] réserve naturelleRésumé : (auteur) Forest above-ground biomass (AGB) estimation provides valuable information about the carbon cycle. Thus, the overall goal of this paper is to present an approach to enhance the accuracy of the AGB estimation. The main objectives are to: 1) investigate the performance of remote sensing data sources, including airborne light detection and ranging (LiDAR), optical, SAR, and their combination to improve the AGB predictions, 2) examine the capability of tree-based machine learning models, and 3) compare the performance of pixel-based and object-based image analysis (OBIA). To investigate the performance of machine learning models, multiple tree-based algorithms were fitted to predictors derived from airborne LiDAR data, Landsat, Sentinel-2, Sentinel-1, and PALSAR-2/PALSAR SAR data collected within New York’s Adirondack Park. Combining remote sensing data from multiple sources improved the model accuracy (RMSE: 52.14 Mg ha−1 and R2: 0.49). There was no significant difference among gradient boosting machine (GBM), random forest (RF), and extreme gradient boosting (XGBoost) models. In addition, pixel-based and object-based models were compared using the airborne LiDAR-derived AGB raster as a training/testing sample. The OBIA provided the best results with the RMSE of 33.77 Mg ha−1 and R2 of 0.81 for the combination of optical and SAR data in the GBM model. Numéro de notice : A2022-331 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2071475 Date de publication en ligne : 27/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2071475 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100607
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany / Laura Horst in Applied Geography, vol 150 (January 2023)
[article]
Titre : Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany Type de document : Article/Communication Auteurs : Laura Horst, Auteur ; Karolina Taczanowska, Auteur ; Florian Porst, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 102825 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] aire protégée
[Termes IGN] ArcGIS
[Termes IGN] Bavière (Allemagne)
[Termes IGN] distribution spatiale
[Termes IGN] données GNSS
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] géodatabase
[Termes IGN] parc naturel national
[Termes IGN] piétonRésumé : (auteur) Systematic monitoring of recreational use in vulnerable ecosystems is crucial to balance human needs and site capacities. Recently, publicly available digital data, including Global Navigation Satellite System-based Volunteered Geographic Information, gained attention as a potential resource depicting visitor movement. However, there is a need to critically assess its reliability for visitor monitoring across countries, regions and available databases. Our research evaluates the usability of GNSS-based VGI-data obtained from three common platforms: GPSies, Outdooractive, and Komoot for assessing the spatial distribution of hikers in the Bavarian Forest National Park. A total sample of 1742 GNSS-tracks uploaded between 2013 and 2018 were compared across data platforms. Additionally, available systematic field counts, carried out between 2013 and 2014 (11 Eco-Counter sensors), were compared to GNSS-based VGI data uploaded within the corresponding period. The comparisons at individual and collective levels (route lengths, kernel density, optimized hotspot analysis along with fishnet-based counts of GNSS-tracks) showed similarities between VGI data platforms. Data obtained from GPSies and Outdooractive displayed a higher correlation with each other than with those obtained from Komoot. Also, for GPSies, there was a significant positive correlation between VGI-data and field count data. Data sample of Outdooractive and Komoot within the specified spatio-temporal frame was too small to compare with available field count data. We highlight the necessity of systematic validation of GNSS-based VGI data resources, being complementary rather than the primary data source in visitor monitoring and recreation planning. Also, systematic long-term visitor monitoring using other methods is crucial to assess the validity of novel data resources, such as GNSS-based VGI. Numéro de notice : A2023-020 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.apgeog.2022.102825 Date de publication en ligne : 25/11/2023 En ligne : https://doi.org/10.1016/j.apgeog.2022.102825 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102220
in Applied Geography > vol 150 (January 2023) . - n° 102825[article]Integration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) / Vahid Nasiri in Arabian Journal of Geosciences, vol 15 n° 24 (December 2022)
[article]
Titre : Integration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Arnaud Le Bris , Auteur ; Ali Asghar Darvishsefat, Auteur ; Fardin Moradi, Auteur Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : n° 1759 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] aire protégée
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SARRésumé : (auteur) Considering the importance of accurate and up-to-date land use/cover (LULC) maps and in a situation of fast LULC changes, an accurate mapping of complex landscapes requires real-time high-resolution remote sensed data and powerful classification algorithms. The new ESA Copernicus satellites Sentinel-1 (S-1) and Sentinel-2 (S-2) have contributed to the effective monitoring of the Earth’s surface. This paper aims at assessing the potential of mono-temporal S-1 and S-2 satellite images and three common classification algorithms including maximum likelihood (ML), support vector machine (SVM), and random forest (RF) for LULC classification. The research methodology consists of a sequence of tasks including data collection and preprocessing, the extraction of texture and spectral features, the definition of several feature set configurations, classification, and accuracy assessment. Based on the results, using S-1 data alone leads to quite poor results, even though dual polarimetric C-band and texture features increased the classification accuracy. The S-2 data outperformed the S-1 data in terms of overall and class level accuracies. A combined use of S-1 and S-2 satellite images involving extracted features from both sources led to the best result for identifying all classes. This emphasizes the critical importance of using multi-modal datasets and different features in the LULC classification. Among classification algorithms, the SVM led to the highest accuracies irrespective of the dataset. To sum it up, according to the applied methodology and results, S-1 and S-2 data can provide optimal and up-to-date information for LULC mapping using non-parametric classifiers as SVM or RF. Numéro de notice : A2022-699 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12517-022-11035-z Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1007/s12517-022-11035-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102253
in Arabian Journal of Geosciences > vol 15 n° 24 (December 2022) . - n° 1759[article]Le Parc national de forêts : des patrimoines en devenir / Pierre Clergeot in Géomètre, n° 2207 (novembre 2022)
[article]
Titre : Le Parc national de forêts : des patrimoines en devenir Type de document : Article/Communication Auteurs : Pierre Clergeot, Auteur Année de publication : 2022 Article en page(s) : pp 45 - 48 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Environnement
[Termes IGN] développement durable
[Termes IGN] feuillu
[Termes IGN] gestion forestière durable
[Termes IGN] parc naturel
[Termes IGN] protection du patrimoineRésumé : (Auteur) Le Grenelle de l’environnement a proposé en 2007 la création d’un parc de forêts de feuillus de plaine. Douze ans plus tard, le « Parc national de forêts » a vu le jour. Le but est d’en faire une zone de protection des patrimoines, économiquement vivante, répondant aux objectifs du développement durable, qui puisse faire école en termes d’aménagement. Numéro de notice : A2022-804 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102128
in Géomètre > n° 2207 (novembre 2022) . - pp 45 - 48[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2022111 RAB Revue Centre de documentation En réserve L003 Disponible Influence of the declaration of protected natural areas on the evolution of forest fires in collective lands in Galicia (Spain) / Gervasio Lopez Rodriguez in Forests, Vol 13 n° 8 (August 2022)PermalinkSpatial assessment of ecosystem services provisioning changes in a forest-dominated protected area in NE Turkey / Can Vatandaslar in Environmental Monitoring and Assessment, vol 194 n° 8 (August 2022)PermalinkTracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020 / Rong Zhang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)PermalinkPhysical modelling of Nanda Devi National Park, a natural world heritage site, from GIS data / Sanat Agrawal in Cartographica, vol 57 n° 2 (Summer 2022)PermalinkUse of remotely sensed data to estimate tree species diversity as an indicator of biodiversity in Blouberg Nature Reserve, South Africa / Mangana Rampheri in Geocarto international, vol 37 n° 2 ([15/01/2022])PermalinkAn assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 / Darius Phiri in Geomatics, Natural Hazards and Risk, vol 13 (2022)PermalinkClassification of mediterranean shrub species from UAV point clouds / Juan Pedro Carbonell-Rivera in Remote sensing, vol 14 n° 1 (January-1 2022)PermalinkItalian National Forest Inventory: Methods and results of the third survey / Patrizia Gasparini (2022)PermalinkPermalinkBuilding fuzzy areal geographical objects from point sets / Jifa Guo in Transactions in GIS, vol 25 n° 6 (December 2021)Permalink