Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Amérique (géographie politique) > Canada > Alberta (Canada)
Alberta (Canada) |
Documents disponibles dans cette catégorie (26)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A geospatial workflow for the assessment of public transit system performance using near real-time data / Anastassios Dardas in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : A geospatial workflow for the assessment of public transit system performance using near real-time data Type de document : Article/Communication Auteurs : Anastassios Dardas, Auteur ; Brent Hall, Auteur ; Jon Salter, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1642 - 1664 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] ArcGIS
[Termes IGN] Calgary
[Termes IGN] collecte de données
[Termes IGN] données spatiotemporelles
[Termes IGN] itinéraire
[Termes IGN] planification urbaine
[Termes IGN] Python (langage de programmation)
[Termes IGN] stockage de données
[Termes IGN] temps réel
[Termes IGN] trafic routier
[Termes IGN] transport public
[Termes IGN] WebSIGRésumé : (auteur) This article presents the development of a Geographical Information Systems (GIS) workflow that harvests high-volume and high-frequency near real-time data from a public General Transit Feed Specification (GTFS) and calculates metrics for the assessment of on-time and route speed performance for a public transit system. The approach is applied to near real-time and static GTFS data collected over a 9-month period for the City of Calgary, Alberta, Canada. The workflow uses two Azure Virtual Machines (VMs), one to harvest the data and the other to process observations in parallel using Python and the ArcGIS API libraries. A Web GIS application is described that queries data from MongoDB to visualize the performance results in spatiotemporal form. The purpose of the workflow and Web GIS application is to provide actionable information to transit planners to improve public transportation systems. The data management and analysis workflow is transferable to similar GTFS data from other cities. Numéro de notice : A2022-531 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : sans Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1111/tgis.12942 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101078
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1642 - 1664[article]Forest height estimation using a single-pass airborne L-band polarimetric and interferometric SAR system and tomographic techniques / Yue Huang in Remote sensing, Vol 13 n° 3 (February 2021)
[article]
Titre : Forest height estimation using a single-pass airborne L-band polarimetric and interferometric SAR system and tomographic techniques Type de document : Article/Communication Auteurs : Yue Huang, Auteur ; Qiaoping Zhang, Auteur ; Laurent Ferro-Famil, Auteur Année de publication : 2021 Article en page(s) : n° 487 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Alberta (Canada)
[Termes IGN] bande L
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] polarimétrie radar
[Termes IGN] surveillance forestière
[Termes IGN] tomographie radarRésumé : (auteur) This paper addresses forest height estimation for boreal forests at the test site of Edson in Alberta, Canada, using dual-baseline PolInSAR dataset measured by Intermap’s single-pass system. This particular dataset is acquired by using both ping-pong and non-ping-pong modes, which permit forming a dual-baseline TomoSAR configuration, i.e., an extreme configuration for tomographic processing. A tomographic approach, based on polarimetric Capon and MUSIC estimators, is proposed to estimate the elevation of tree top and of underlying ground, and hence forest height is estimated. The resulting forest DTM and DSM over the test site are validated against LiDAR-derived estimates, demonstrating the undeniable capability of the single-pass L-band PolInSAR system for forest monitoring. Numéro de notice : A2021-200 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13030487 Date de publication en ligne : 30/01/2021 En ligne : https://doi.org/10.3390/rs13030487 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97153
in Remote sensing > Vol 13 n° 3 (February 2021) . - n° 487[article]Deep learning for wildfire progression monitoring using SAR and optical satellite image time series / Puzhao Zhang (2021)
Titre : Deep learning for wildfire progression monitoring using SAR and optical satellite image time series Type de document : Thèse/HDR Auteurs : Puzhao Zhang, Auteur Editeur : Stockholm : Royal Institute of Technology Année de publication : 2021 Importance : 100 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-91-7873-935-6 Note générale : bibliographie
Doctoral Thesis in GeoinformaticsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Alberta (Canada)
[Termes IGN] apprentissage profond
[Termes IGN] bande C
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] détection de changement
[Termes IGN] gestion des risques
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] incendie de forêt
[Termes IGN] série temporelle
[Termes IGN] surveillance forestière
[Termes IGN] Sydney (Nouvelle-Galles du Sud)
[Termes IGN] zone sinistréeRésumé : (auteur) Wildfires have coexisted with human societies for more than 350 million years, always playing an important role in affecting the Earth's surface and climate. Across the globe, wildfires are becoming larger, more frequent, and longer-duration, and tend to be more destructive both in lives lost and economic costs, because of climate change and human activities. To reduce the damages from such destructive wildfires, it is critical to track wildfire progressions in near real-time, or even real-time. Satellite remote sensing enables cost-effective, accurate, and timely monitoring on the wildfire progressions over vast geographic areas. The free availability of global coverage Landsat-8 and Sentinel-1/2 data opens the new era for global land surface monitoring, providing an opportunity to analyze wildfire impacts around the globe. The advances in both cloud computing and deep learning empower the automatic interpretation of spatio-temporal remote sensing big data on a large scale. The overall objective of this thesis is to investigate the potential of modern medium resolution earth observation data, especially Sentinel-1 C-Band synthetic aperture radar (SAR) data, in wildfire monitoring and develop operational and effective approaches for real-world applications. This thesis systematically analyzes the physical basis of earth observation data for wildfire applications, and critically reviews the available wildfire burned area mapping methods in terms of satellite data, such as SAR, optical, and SAR-Optical fusion. Taking into account its great power in learning useful representations, deep learning is adopted as the main tool to extract wildfire-induced changes from SAR and optical image time series. On a regional scale, this thesis has conducted the following four fundamental studies that may have the potential to further pave the way for achieving larger scale or even global wildfire monitoring applications. To avoid manual selection of temporal indices and to highlight wildfire-induced changes in burned areas, we proposed an implicit radar convolutional burn index (RCBI), with which we assessed the roles of Sentinel-1 C-Band SAR intensity and phase in SAR-based burned area mapping. The experimental results show that RCBI is more effective than the conventional log-ratio differencing approach in detecting burned areas. Though VV intensity itself may perform poorly, the accuracy can be significantly improved when phase information is integrated using Interferometric SAR (InSAR). On the other hand, VV intensity also shows the potential to improve VH intensity-based detection results with RCBI. By exploiting VH and VV intensity together, the proposed RCBI achieved an overall mapping accuracy of 94.68% and 94.17% on the 2017 Thomas Fire and the 2018 Carr Fire. For the scenario of near real-time application, we investigated and demonstrated the potential Sentinel-1 SAR time series for wildfire progression monitoring with Convolutional Neural Networks (CNN). In this study, the available pre-fire SAR time series were exploited to compute temporal average and standard deviation for characterizing SAR backscatter behaviors over time and highlighting the changes with kMap. Trained with binarized kMap time series in a progression-wise manner, CNN showed good capability in detecting wildfire burned areas and capturing temporal progressions as demonstrated on three large and impactful wildfires with various topographic conditions. Compared to the pseudo masks (binarized kMap), CNN-based framework brought an 0.18 improvement in F1 score on the 2018 Camp Fire, and 0.23 on the 2019 Chuckegg Creek Fire. The experimental results demonstrated that spaceborne SAR time series with deep learning can play a significant role for near real-time wildfire monitoring when the data becomes available at daily and hourly intervals. For continuous wildfire progression mapping, we proposed a novel framework of learning U-Net without forgetting in a near real-time manner. By imposing a temporal consistency restriction on the network response, Learning without Forgetting (LwF) allows the U-Net to learn new capabilities for better handling with newly incoming data, and simultaneously keep its existing capabilities learned before. Unlike the continuous joint training (CJT) with all available historical data, LwF makes U-Net learning not dependent on the historical training data any more. To improve the quality of SAR-based pseudo progression masks, we accumulated the burned areas detected by optical data acquired prior to SAR observations. The experimental results demonstrated that LwF has the potential to match CJT in terms of the agreement between SAR-based results and optical-based ground truth, achieving a F1 score of 0.8423 on the Sydney Fire (2019-2020) and 0.7807 on the Chuckegg Creek Fire (2019). We also found that the SAR cross-polarization ratio (VH/VV) can be very useful in highlighting burned areas when VH and VV have diverse temporal change behaviors. SAR-based change detection often suffers from the variability of the surrounding background noise, we proposed a Total Variation (TV)-regularized U-Net model to relieve the influence of SAR-based noisy masks. Considering the small size of labeled wildfire data, transfer learning was adopted to fine-tune U-Net from pre-trained weights based on the past wildfire data. We quantified the effects of TV regularization on increasing the connectivity of SAR-based areas, and found that TV-regularized U-Net can significantly increase the burned area mapping accuracy, bringing an improvement of 0.0338 in F1 score and 0.0386 in IoU score on the validation set. With TV regularization, U-Net trained with noisy SAR masks achieved the highest F1 (0.6904) and IoU (0.5295), while U-Net trained with optical reference mask achieved the highest F1 (0.7529) and IoU (0.6054) score without TV regularization. When applied on wildfire progression mapping, TV-regularized U-Net also worked significantly better than vanilla U-Net with the supervision of noisy SAR-based masks, visually comparable to optical mask-based results. On the regional scale, we demonstrated the effectiveness of deep learning on SAR-based and SAR-optical fusion based wildfire progression mapping. To scale up deep learning models and make them globally applicable, large-scale globally distributed data is needed. Considering the scarcity of labelled data in the field of remote sensing, weakly/self-supervised learning will be our main research directions to go in the near future. Note de contenu : 1- Introduction
2- Literature review
3- Study areas and data
4- Metodology
5- Results and discussionNuméro de notice : 28309 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse étrangère Note de thèse : PhD Thesis : Geomatics : RTK Stockholm : 2021 DOI : sans En ligne : http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1557429 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98130 The utility of terrestrial photogrammetry for assessment of tree volume and taper in boreal mixedwood forests / Christopher Mulverhill in Annals of Forest Science, Vol 76 n° 3 (September 2019)
[article]
Titre : The utility of terrestrial photogrammetry for assessment of tree volume and taper in boreal mixedwood forests Type de document : Article/Communication Auteurs : Christopher Mulverhill, Auteur ; Nicholas C. Coops, Auteur ; Piotr Tompalski, Auteur ; Christopher W. Bater, Auteur ; Adam R. Dick, Auteur Année de publication : 2019 Article en page(s) : pp 76 - 83 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] Abies balsamea
[Termes IGN] Alberta (Canada)
[Termes IGN] allométrie
[Termes IGN] betula papyrifera var. papyrifera
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] diamètre des arbres
[Termes IGN] données dendrométriques
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] image terrestre
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] peuplement mélangé
[Termes IGN] photogrammétrie terrestre
[Termes IGN] Picea glauca
[Termes IGN] Picea mariana
[Termes IGN] Pinus contorta
[Termes IGN] Populus tremuloides
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Key Message: This study showed that digital terrestrial photogrammetry is able to produce accurate estimates of stem volume and diameter across a range of species and tree sizes that showed strong correspondence when compared with traditional inventory techniques. This paper demonstrates the utility of the technology for characterizing trees in complex habitats such as boreal mixedwood forests.
Context: Accurate knowledge of tree stem taper and volume are key components of forest inventories to manage and study forest resources. Recent developments have seen the increasing use of ground-based point clouds, including from digital terrestrial photogrammetry (DTP), to provide accurate estimates of these key forest attributes.
Aims: In this study, we evaluated the utility of DTP based on a small set of photos (12 per tree) for estimating stem volume and taper on a set of 15 trees from 6 different species (Populus tremuloides, Picea glauca, Pinus contorta latifolia, Betula papyrifera, Picea mariana, Abies balsamea) in a boreal mixedwood forest in Alberta, Canada.
Methods: We constructed accurate photogrammetric point clouds and derived taper and volume from three point cloud–based methods, which were then compared with estimates from conventional, field-based measurements. All methods were evaluated for their accuracy based on field-measured taper and volume of felled trees.
Results: Of the methods tested, we found that the point cloud–derived diameters in a taper curve matching approach performed the best at estimating diameters at the lowest parts of the stem ( 50% of total height). Using the field-measured DBH and height as inputs to calculate stem volume yielded the most accurate predictions; however, these were not significantly different from the best point cloud-based estimates.
Conclusion: The methodology confirmed that using a small set of photographs provided accurate estimates of individual tree DBH, taper, and volume across a range of species and size gradients (10.8–40.4 cm DBH).Numéro de notice : A2019-303 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-019-0852-9 Date de publication en ligne : 08/08/2019 En ligne : https://doi.org/10.1007/s13595-019-0852-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93226
in Annals of Forest Science > Vol 76 n° 3 (September 2019) . - pp 76 - 83[article]A four‐dimensional agent‐based model: A case study of forest‐fire smoke propagation / Alex Smith in Transactions in GIS, vol 23 n° 3 (June 2019)
[article]
Titre : A four‐dimensional agent‐based model: A case study of forest‐fire smoke propagation Type de document : Article/Communication Auteurs : Alex Smith, Auteur ; Suzana Dragićević, Auteur Année de publication : 2019 Article en page(s) : pp 417 - 434 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Alberta (Canada)
[Termes IGN] Colombie-Britannique (Canada)
[Termes IGN] données 4D
[Termes IGN] fumée
[Termes IGN] incendie de forêt
[Termes IGN] modèle orienté agent
[Termes IGN] modélisation 4D
[Termes IGN] risque environnemental
[Termes IGN] système multi-agentsRésumé : (Auteur) Dynamic geospatial complex systems are inherently four‐dimensional (4D) processes and there is a need for spatio‐temporal models that are capable of realistic representation for improved understanding and analysis. Such systems include changes of geological structures, dune formation, landslides, pollutant propagation, forest fires, and urban densification. However, these phenomena are frequently analyzed and represented with modeling approaches that consider only two spatial dimensions and time. Consequently, the main objectives of this study are to design and develop a modeling framework for 4D agent‐based modeling, and to implement the approach to the 4D case study for forest‐fire smoke propagation. The study area is central and southern British Columbia and the western parts of Alberta, Canada for forest fires that occurred in the summer season of 2017. The simulation results produced realistic spatial patterns of the smoke propagation dynamics. Numéro de notice : A2019-253 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12551 Date de publication en ligne : 29/05/2019 En ligne : https://doi.org/10.1111/tgis.12551 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93011
in Transactions in GIS > vol 23 n° 3 (June 2019) . - pp 417 - 434[article]Digital preservation, social history, and the Quon Sang Lung Laundry building : a case study from Fort Macleod, Alberta, Canada / Peter Dawson in Applied geomatics, vol 10 n° 4 (December 2018)Permalink3D building model-assisted snapshot positioning algorithm / Rakesh Kumar in GPS solutions, vol 21 n° 4 (October 2017)PermalinkPan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents / Khan Rubayet Rahaman in ISPRS International journal of geo-information, vol 6 n° 6 (June 2017)PermalinkEvaluating the impact of leaf-on and leaf-off airborne laser scanning data on the estimation of forest inventory attributes with the area-based approach / Joanne C. White in Canadian Journal of Forest Research, vol 45 n° 11 (November 2015)PermalinkPrediction of traffic counts using statistical and neural network models / Abul Kalam Azad in Geomatica, vol 69 n° 3 (september 2015)PermalinkA service-oriented architecture to enable participatory planning: an e-planning platform / M. Ebrahim Poorazizi in International journal of geographical information science IJGIS, vol 29 n° 7 (July 2015)PermalinkWeb-based PPGIS and multicriteria decision analysis, A case study / Jacek Malczewski in Revue internationale de géomatique, vol 23 n° 1 (mars - mai 2013)PermalinkAgent-based modeling of stakeholder's interactions in a land development project in southern Alberta / D. Marceau in Revue internationale de géomatique, vol 22 n° 1 (mars - mai 2012)PermalinkElectromagnetic land surface classification through integration of optical and radar remote sensing data / J. Baek in IEEE Transactions on geoscience and remote sensing, vol 49 n° 4 (April 2011)PermalinkA disturbance inventory framework for flexible and reliable landscape monitoring / J. Linke in Photogrammetric Engineering & Remote Sensing, PERS, vol 75 n° 8 (August 2009)Permalink