Descripteur
Documents disponibles dans cette catégorie (9015)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)
[article]
Titre : Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography Type de document : Article/Communication Auteurs : Ihor Kozak, Auteur ; Mikhail Popov, Auteur ; Igor Semko, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 127793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] forêt urbaine
[Termes IGN] houppier
[Termes IGN] image hémisphérique
[Termes IGN] Leaf Area Index
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] photographie numérique
[Termes IGN] Pinus sylvestris
[Termes IGN] Pologne
[Termes IGN] semis de points
[Termes IGN] surface terrièreRésumé : (auteur) The article proposes methods for combining Airborne Laser Scanning (ALS) with Digital Hemispherical Photography (DHP) data required by the Urban Forest Biomass (UFB) model to predict the aboveground biomass (AGB) of Scotch pine (Pinus sylvestris L.) in urban forests of Lublin (Poland). The article also demonstrates the potential of ALS and DHP data in urban AGB estimation. ALS and Leaf Area Index (LAI) data were calculated using a voxels-vector approach based on the measurements taken at eight permanent sample plots (PSPs). The research was conducted in 2014 and the prediction was made until 2030. It was found that the determination coefficients (R2) for the Basal Area (BA) of the trees are 0.97, and the BA modeling parameters have a high correlation with those observed in the field (model efficiency (ME) 0.94). 83 % growth trajectory based on the measured BA was appropriately modeled using the UFB model (P > 0.9). The results for AGB show that the degree of fitting and accuracy are greatest for the Monte Carlo (MC) simulation technique based on ALS and DHP data (UBF with ALS and DHP) where R2 = 0.98, RMSE = 2.97 t/ha, MAE = 2.35 t/ha, rRMSE = 1.28 %, which performed better than MC simulation technique without ALS and DHP (UBF without ALS and DHP) where R2 = 0.94, RMSE = 4.58 t/ha, MAE = 3.64 t/ha, rRMSE = 3.29 %. The results indicate that the proposed method based on combining the UFB model, LiDAR and DHP allows us to improve the accuracy of the AGB prediction. Numéro de notice : A2023-023 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ufug.2022.127793 Date de publication en ligne : 23/11/2022 En ligne : https://doi.org/10.1016/j.ufug.2022.127793 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102246
in Urban Forestry & Urban Greening > vol 79 (January 2023) . - n° 127793[article]Investigating the impact of pan sharpening on the accuracy of land cover mapping in Landsat OLI imagery / Komeil Rokni in Geodesy and cartography, vol 49 n° 1 (January 2023)
[article]
Titre : Investigating the impact of pan sharpening on the accuracy of land cover mapping in Landsat OLI imagery Type de document : Article/Communication Auteurs : Komeil Rokni, Auteur Année de publication : 2023 Article en page(s) : pp 12 - 18 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Gram-Schmidt
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] Kappa de Cohen
[Termes IGN] matrice de confusion
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] précision de la classificationRésumé : (auteur) Pan Sharpening is normally applied to sharpen a multispectral image with low resolution by using a panchromatic image with a higher resolution, to generate a high resolution multispectral image. The present study aims at assessing the power of Pan Sharpening on improvement of the accuracy of image classification and land cover mapping in Landsat 8 OLI imagery. In this respect, different Pan Sharpening algorithms including Brovey, Gram-Schmidt, NNDiffuse, and Principal Components were applied to merge the Landsat OLI panchromatic band (15 m) with the Landsat OLI multispectral: visible and infrared bands (30 m), to generate a new multispectral image with a higher spatial resolution (15 m). Subsequently, the support vector machine approach was utilized to classify the original Landsat and resulting Pan Sharpened images to generate land cover maps of the study area. The outcomes were then compared through the generation of confusion matrix and calculation of kappa coefficient and overall accuracy. The results indicated superiority of NNDiffuse algorithm in Pan Sharpening and improvement of classification accuracy in Landsat OLI imagery, with an overall accuracy and kappa coefficient of about 98.66% and 0.98, respectively. Furthermore, the result showed that the Gram-Schmidt and Principal Components algorithms also slightly improved the accuracy of image classification compared to original Landsat image. The study concluded that image Pan Sharpening is useful to improve the accuracy of image classification in Landsat OLI imagery, depending on the Pan Sharpening algorithm used for this purpose. Numéro de notice : A2023-142 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3846/gac.2023.15308 Date de publication en ligne : 17/02/2023 En ligne : https://doi.org/10.3846/gac.2023.15308 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102712
in Geodesy and cartography > vol 49 n° 1 (January 2023) . - pp 12 - 18[article]Landscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population / Heng Wan in Computers, Environment and Urban Systems, vol 99 (January 2023)
[article]
Titre : Landscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population Type de document : Article/Communication Auteurs : Heng Wan, Auteur ; Jim Yoon, Auteur ; Vivek Srikrishnan, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101899 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] carte thématique
[Termes IGN] densité de population
[Termes IGN] distribution spatiale
[Termes IGN] Etats-Unis
[Termes IGN] indicateur paysager
[Termes IGN] interpolation
[Termes IGN] occupation du sol
[Termes IGN] paysage
[Termes IGN] planification urbaine
[Termes IGN] réduction d'échelleRésumé : (auteur) Population downscaling and interpolation methods are required to produce data which correspond to spatial units used in urban planning, demography, and environmental modeling. Population data are typically aggregated at census enumeration units, which can have arbitrary, temporally-evolving boundaries. Previous approaches to imperviousness-based dasymetric mapping ignore cell-level patterning of imperviousness within a spatial unit of prediction, which potentially serve as a strong indicator of population. Landscape metrics derived from imperviousness data offer a promising approach to capture these patterns. In this study, we incorporate landscape metrics derived from impervious cover percentage maps into intelligent dasymetric mapping to downscale population from census tracts to block groups in four states with varying population densities: Connecticut, South Carolina, West Virginia, and New Mexico. We compare the performance of the landscape metrics-based models against two baseline models in all four states across three different time periods. The results show that intelligent dasymetric mapping using landscape metrics generally outperforms the two baseline models. We further compare the performance of landscape metrics as an ancillary source of information for dasymetric mapping against other traditionally-used datasets (e.g., land use, roads, nighttime lights data) in three states (Connecticut, South Carolina, and New Mexico) in 2000. We find that class area, landscape shape index, and number of patches consistently achieve lower error rates than other ancillary datasets in all the three states. Numéro de notice : A2023-013 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101899 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101899 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102130
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101899[article]Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach / Shenglong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
[article]
Titre : Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach Type de document : Article/Communication Auteurs : Shenglong Chen, Auteur ; Yoshiki Ogawa, Auteur ; Chenbo Zhao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 129 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couleur (variable spectrale)
[Termes IGN] détection du bâti
[Termes IGN] distribution de Gauss
[Termes IGN] image à haute résolution
[Termes IGN] mosaïquage d'images
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Building footprint is a primary dataset of an urban geographic information system (GIS) database. Therefore, it is essential to establish a robust and automated framework for large-scale building extraction. However, the characteristic of remote sensing images complicates the application of the instance segmentation method based on the Mask R-CNN model, which ought to be improved toward extracting and fusing multi-scale features. Moreover, open-source satellite image datasets with wider spatial coverage and temporal resolution than high-resolution images may exhibit different coloration and resolution. This study proposes a large-scale building extraction framework based on super-resolution (SR) and instance segmentation using a relatively lower-resolution (>0.6 m) open-sourced dataset. The framework comprises four steps: color normalization and image super-resolution, scene classification, building extraction, and scene mosaicking. We took Hyogo Prefecture, Japan (19,187 km2) as a test area and extracted 1,726,006 (29.12 km2) of the 3,301,488 buildings (32.46 km2), where the number of buildings and footprint area increased by 3.0 % and 5.0 % respectively. The result indicated that the color normalization and image super-resolution could improve the visual quality of open-source satellite images and contribute to building extraction accuracy. Moreover, the improved Mask R-CNN based on Multi-Path Vision Transformer (MPViT) backbone achieved F1 scores of 0.71, 0.70, 0.81, and 0.67 for non-built-up, rural, suburban, and urban areas, respectively, which is better than those of the baseline model and other mainstream instance segmentation approaches. This study demonstrates the potential of acquiring acceptable building footprint maps from open-source satellite images, which has significant practical implications. Numéro de notice : A2023-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.006 Date de publication en ligne : 30/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102214
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 129 - 152[article]Linear building pattern recognition in topographical maps combining convex polygon decomposition / Zhiwei Wei in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Linear building pattern recognition in topographical maps combining convex polygon decomposition Type de document : Article/Communication Auteurs : Zhiwei Wei, Auteur ; Su Ding, Auteur ; Lu Cheng, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte topographique
[Termes IGN] construction
[Termes IGN] décomposition
[Termes IGN] détection du bâti
[Termes IGN] forme linéaire
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] Ordnance Survey (UK)
[Termes IGN] polygone
[Termes IGN] reconnaissance de formesRésumé : (auteur) Building patterns are crucial for urban form understanding, automated map generalization, and 3 D city model visualization. The existing studies have recognized various building patterns based on visual perception rules in which buildings are considered as a whole. However, some visually aware patterns may fail to be recognized with these approaches because human vision is also proved as a part-based system. This paper first proposed an approach for linear building pattern recognition combining convex polygon decomposition. Linear building patterns including collinear patterns and curvilinear patterns are defined according to the proximity, similarity, and continuity between buildings. Linear building patterns are then recognized by combining convex polygon decomposition, in which a building can be decomposed into sub-buildings for pattern recognition. A novel node concavity is developed based on polygon skeletons which is applicable for building polygons with holes or not in the building decomposition. And building’s orthogonal features are also considered in the building decomposition. Two datasets collected from Ordnance Survey (OS) were used in the experiments to verify the effectiveness of the proposed approach. The results indicate that our approach achieves 25.57% higher precision and 32.23% higher recall in collinear pattern recognition and 15.67% higher precision and 18.52% higher recall in curvilinear pattern recognition when compared to existing approaches. Recognition of other kinds of building patterns including T-shaped and C-shaped patterns combining convex polygon decomposition are also discussed in this approach. Numéro de notice : A2022-263 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2055794 Date de publication en ligne : 27/03/2022 En ligne : https://doi.org/10.1080/10106049.2022.2055794 Format de la ressource électronique : 27/03/2022 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100260
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]A machine learning method for Arctic lakes detection in the permafrost areas of Siberia / Piotr Janiec in European journal of remote sensing, vol 56 n° 1 (2023)PermalinkMachine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)PermalinkMapping the anthropic occupation of the territory. Tracing dynamics of human settlement from archaeological records and historic cartographies / Marina López Sánchez in Journal of maps, vol 18 n° 1 (January 2023)PermalinkMeasuring metro accessibility: An exploratory study of Wuhan based on multi-source urban data / Tao Wu in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)PermalinkA method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination / Kaili Zhang in Geocarto international, vol 38 n° 1 ([01/01/2023])PermalinkPermalinkModern vectorization and alignment of historical maps: An application to Paris Atlas (1789-1950) / Yizi Chen (2023)PermalinkMTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction / Du Yin in Geoinformatica, vol 27 n° 1 (January 2023)PermalinkMulti-information PointNet++ fusion method for DEM construction from airborne LiDAR data / Hong Hu in Geocarto international, vol 38 n° 1 ([01/01/2023])PermalinkMultipath mitigation for improving GPS narrow-lane uncalibrated phase delay estimation and speeding up PPP ambiguity resolution / Kai Zheng in Measurement, vol 206 (January 2023)PermalinkA nonlinear Gauss-Helmert model and its robust solution for seafloor control point positioning / Yingcai Kuang in Marine geodesy, vol 46 n° 1 (January 2023)PermalinkParameterisation of the GNSS troposphere tomography domain with optimisation of the nodes’ distribution / Estera Trzcina in Journal of geodesy, vol 97 n° 1 (January 2023)PermalinkPermalinkPrototype-guided multitask adversarial network for cross-domain LiDAR point clouds semantic segmentation / Zhimin Yuan in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)PermalinkPSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images / Teng Wu (2023)PermalinkRapid mapping of seismic intensity assessment using ground motion data calculated from early aftershocks selected by GIS spatial analysis / Huaiqun Zhao in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)PermalinkSediment yield estimation in GIS environment using RUSLE and SDR model in Southern Ethiopia / Dawit Kanito in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)PermalinkSemi-supervised label propagation for multi-source remote sensing image change detection / Fan Hao in Computers & geosciences, vol 170 (January 2023)PermalinkPermalinkSimplified automatic prediction of the level of damage to similar buildings affected by river flood in a specific area / David Marín-García in Sustainable Cities and Society, vol 88 (January 2023)Permalink