Descripteur
Documents disponibles dans cette catégorie (29)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Hierarchical classification of pole‐like objects in mobile laser scanning point clouds / Rufei Liu in Photogrammetric record, vol 35 n° 169 (March 2020)
[article]
Titre : Hierarchical classification of pole‐like objects in mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Rufei Liu, Auteur ; Peng Wang, Auteur ; Zhaojin Yan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 81 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de la valeur
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] lidar mobile
[Termes IGN] milieu urbain
[Termes IGN] semis de points
[Termes IGN] valeur propreRésumé : (Auteur) For the classification of pole‐like objects (trees, lamp posts, traffic lights and traffic signs) in mobile laser scanning (MLS) point clouds, a hierarchical classification method is proposed. The method consists of three major steps. (1) The objects’ cylindrical column sections are detected based on the characteristics of arc‐like points using RANSAC after denoising. (2) These detected objects are roughly classified into trees and man‐made poles based on the azimuthal coverage of point clouds above the cylindrical column. (3) Eigenvalue analysis and the principal direction of the upper pole projections are used to differentiate lamp posts, traffic lights and traffic signs. Experimental analysis shows that the method can effectively identify different types of pole‐like objects. Numéro de notice : A2020-133 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12307 Date de publication en ligne : 10/01/2020 En ligne : https://doi.org/10.1111/phor.12307 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94819
in Photogrammetric record > vol 35 n° 169 (March 2020) . - pp 81 - 107[article]Critical analysis of model-based incoherent polarimetric decomposition methods and investigation of deorientation effect / Pooja Mishra in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)
[article]
Titre : Critical analysis of model-based incoherent polarimetric decomposition methods and investigation of deorientation effect Type de document : Article/Communication Auteurs : Pooja Mishra, Auteur ; Akanksha Garg, Auteur ; Dharmendra Singh, Auteur Année de publication : 2017 Article en page(s) : pp 4868 - 4877 Note générale : Bibliothèque Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] décomposition d'image
[Termes IGN] diffusion du rayonnement
[Termes IGN] données polarimétriques
[Termes IGN] image ALOS
[Termes IGN] image ALOS-PALSAR
[Termes IGN] occupation du sol
[Termes IGN] polarimétrie radar
[Termes IGN] valeur propre
[Termes IGN] zone urbaineRésumé : (Auteur) This paper critically analyzes several incoherent model-based decomposition methods for assessing the effect of deorientation in characterization of various land covers. It has been found that even after performing decomposition, ambiguity still occurs in scattering response from various land covers, such as urban and vegetation. Researchers introduced the concept of deorientation to remove this ambiguity. Therefore, in this paper, a critical analysis has been carried out using seven different three- and four-component decomposition methods with and without deorientation and two Eigen decomposition-based methods to investigate the scattering response on various land covers, such as urban, vegetation, bare soil, and water. The comprehensive evaluation of decomposition and deorientation effect has been performed by both visual and quantitative analyses. Two types of quantitative analysis have been performed; first, by observing percentage of scattering power and second, by analyzing the variation in the number of pixels in different land covers for each scattering contribution. The analysis shows that deorientation increases not only the power but also the number of pixels for surface and double bounce scattering. The number of pixels representing volume scattering remain almost the same for all the methods with or without deorientation, whereas volume scattering power reduces after deorientation. Eigen decomposition-based methods are observed to solve the problem of overestimation of volume scattering power. Numéro de notice : A2017-657 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2652060 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2652060 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87067
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 9 (September 2017) . - pp 4868 - 4877[article]Analytical and numerical investigations on the accuracy and robustness of geometric features extracted from 3D point cloud data / André Dittrich in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)
[article]
Titre : Analytical and numerical investigations on the accuracy and robustness of geometric features extracted from 3D point cloud data Type de document : Article/Communication Auteurs : André Dittrich, Auteur ; Martin Weinmann, Auteur ; Stefan Hinz, Auteur Année de publication : 2017 Article en page(s) : pp 195 – 208 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bruit (théorie du signal)
[Termes IGN] calcul tensoriel
[Termes IGN] discrétisation
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] lasergrammétrie
[Termes IGN] méthode robuste
[Termes IGN] restitution lasergrammétrique
[Termes IGN] semis de points
[Termes IGN] valeur propreRésumé : (auteur) In photogrammetry, remote sensing, computer vision and robotics, a topic of major interest is represented by the automatic analysis of 3D point cloud data. This task often relies on the use of geometric features amongst which particularly the ones derived from the eigenvalues of the 3D structure tensor (e.g. the three dimensionality features of linearity, planarity and sphericity) have proven to be descriptive and are therefore commonly involved for classification tasks. Although these geometric features are meanwhile considered as standard, very little attention has been paid to their accuracy and robustness. In this paper, we hence focus on the influence of discretization and noise on the most commonly used geometric features. More specifically, we investigate the accuracy and robustness of the eigenvalues of the 3D structure tensor and also of the features derived from these eigenvalues. Thereby, we provide both analytical and numerical considerations which clearly reveal that certain features are more susceptible to discretization and noise whereas others are more robust. Numéro de notice : A2017-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.02.012 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2017.02.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84512
in ISPRS Journal of photogrammetry and remote sensing > vol 126 (April 2017) . - pp 195 – 208[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017043 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt The D-FCM partitioned D-BSP tree for massive point cloud data access and rendering / Yi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 120 (october 2016)
[article]
Titre : The D-FCM partitioned D-BSP tree for massive point cloud data access and rendering Type de document : Article/Communication Auteurs : Yi Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 25 - 36 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse en composantes principales
[Termes IGN] arbre BSP
[Termes IGN] classification floue
[Termes IGN] densité des points
[Termes IGN] semis de points
[Termes IGN] traitement de semis de points
[Termes IGN] valeur propreRésumé : (Auteur) The spatial partitioning of massive point cloud data involves dividing the space into a multi-tree structure step by step, so as to achieve the purpose of fast access and to render the point cloud. The current methods are based on spatial regularity and equal division, which is not consistent with the irregular and non-uniform distribution of most point clouds. This paper presents a directional fuzzy c-means (D-FCM) method for irregular spatial partitioning. The distance metric is weighted by a direction coefficient, which is determined by the eigenvalue of the point cloud. The orientation of each node is adaptively calculated by principal component analysis of the point cloud, and Karhunen-Loeve (KL) transform is applied to the points coordinates in node. A binary space partitioning (BSP) tree structure is used to partition the point cloud data node by node, and a directional BSP (D-BSP) tree is formed. The D-BSP tree structure was tested with point clouds of 0.1 million to over 2 billion points (up to 60 GB). The experimental results showed that the D-BSP tree can ensure that the bounding boxes are close to the actual spatial distribution of the point cloud, it can completely expand along the spatial configuration of the point cloud without generating unnecessary partitioning, and it can achieve a higher rendering speed with less memory requirement. Numéro de notice : A2016-795 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.08.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.08.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82529
in ISPRS Journal of photogrammetry and remote sensing > vol 120 (october 2016) . - pp 25 - 36[article]Estimating the intrinsic dimension of hyperspectral images using a noise-whitened eigengap approach / Abderrahim Halimi in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)
[article]
Titre : Estimating the intrinsic dimension of hyperspectral images using a noise-whitened eigengap approach Type de document : Article/Communication Auteurs : Abderrahim Halimi, Auteur ; Paul Honeine, Auteur ; Malika Kharouf, Auteur ; Cédric Richard, Auteur ; Jean-Yves Tourneret, Auteur Année de publication : 2016 Article en page(s) : pp 3811 - 3821 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bruit blanc
[Termes IGN] image hyperspectrale
[Termes IGN] modèle de mélange multilinéaire
[Termes IGN] valeur propreRésumé : (Auteur) Linear mixture models are commonly used to represent a hyperspectral data cube as linear combinations of endmember spectra. However, determining the number of endmembers for images embedded in noise is a crucial task. This paper proposes a fully automatic approach for estimating the number of endmembers in hyperspectral images. The estimation is based on recent results of random matrix theory related to the so-called spiked population model. More precisely, we study the gap between successive eigenvalues of the sample covariance matrix constructed from high-dimensional noisy samples. The resulting estimation strategy is fully automatic and robust to correlated noise owing to the consideration of a noise-whitening step. This strategy is validated on both synthetic and real images. The experimental results are very promising and show the accuracy of this algorithm with respect to state-of-the-art algorithms. Numéro de notice : A2016-873 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2528298 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2528298 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83032
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 7 (July 2016) . - pp 3811 - 3821[article]Sparse and low-rank graph for discriminant analysis of hyperspectral imagery / Wei Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)PermalinkSpatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis / Marco Helbich in Cartography and Geographic Information Science, Vol 42 n° 2 (April 2015)PermalinkUL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification / Weiwei Sun in ISPRS Journal of photogrammetry and remote sensing, vol 89 (March 2014)PermalinkHyperspectral image noise reduction based on rank-1 tensor decomposition / Xian Guoa in ISPRS Journal of photogrammetry and remote sensing, vol 83 (September 2013)PermalinkTowards 3D lidar point cloud registration improvement using optimal neighborhood knowledge / Adrien Gressin in ISPRS Journal of photogrammetry and remote sensing, vol 79 (May 2013)PermalinkEstimation de la qualité des résultats [d'une] classification sous ENVI / Nidal Aburajab (2013)PermalinkImproving 3D lidar point cloud registration using optimal neighborhood knowledge / Adrien Gressin in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol I-3 (2012)PermalinkBuilding feature extraction from airborne lidar data based on tensor voting algorithm / R. You in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 12 (December 2011)PermalinkPermalinkAdjustability and error propagation for true replacement sensor models / C. Puatanachokchai in ISPRS Journal of photogrammetry and remote sensing, vol 63 n° 3 (May - June 2008)Permalink