Descripteur
Termes IGN > mathématiques > algorithmique > plus proche voisin, algorithme du
plus proche voisin, algorithme duVoir aussi |
Documents disponibles dans cette catégorie (47)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis / Chuan Yin in ISPRS International journal of geo-information, vol 11 n° 7 (July 2022)
[article]
Titre : Geographic knowledge graph attribute normalization: Improving the accuracy by fusing optimal granularity clustering and co-occurrence analysis Type de document : Article/Communication Auteurs : Chuan Yin, Auteur ; Binyu Zhang, Auteur ; Wanzeng Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 360 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] attribut sémantique
[Termes IGN] granularité (informatique)
[Termes IGN] granularité d'image
[Termes IGN] matrice de co-occurrence
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] relation sémantique
[Termes IGN] réseau sémantique
[Termes IGN] synonymieRésumé : (auteur) Expansion of the entity attribute information of geographic knowledge graphs is essentially the fusion of the Internet’s encyclopedic knowledge. However, it lacks structured attribute information, and synonymy and polysemy always exist. These reduce the quality of the knowledge graph and cause incomplete and inaccurate semantic retrieval. Therefore, we normalize the attributes of a geographic knowledge graph based on optimal granularity clustering and co-occurrence analysis, and use structure and the semantic relation of the entity attributes to identify synonymy and correlation between attributes. Specifically: (1) We design a classification system for geographic attributes, that is, using a community discovery algorithm to classify the attribute names. The optimal clustering granularity is identified by the marker target detection algorithm. (2) We complete the fine-grained identification of attribute relations by analyzing co-occurrence relations of the attributes and rule inference. (3) Finally, the performance of the system is verified by manual discrimination using the case of “landscape, forest, field, lake and grass”. The results show the following: (1) The average precision of spatial relations was 0.974 and the average recall was 0.937; the average precision of data relations was 0.977 and the average recall was 0.998. (2) The average F1 for similarity results is 0.473; the average F1 for co-occurrence analysis results is 0.735; the average F1 for rule-based modification results is 0.934; the results show that the accuracy is greater than 90%. Compared to traditional methods only focusing on similarity, the accuracy of synonymous attribute recognition improves the system and we are capable of identifying near-sense attributes. Integration of our system and attribute normalization can greatly improve both the processing efficiency and accuracy. Numéro de notice : A2022-548 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11070360 Date de publication en ligne : 23/06/2022 En ligne : https://doi.org/10.3390/ijgi11070360 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101149
in ISPRS International journal of geo-information > vol 11 n° 7 (July 2022) . - n° 360[article]Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
[article]
Titre : Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour Type de document : Article/Communication Auteurs : Olivier de Joinville , Auteur ; Chloé Marcon, Auteur Année de publication : 2022 Article en page(s) : pp 36 - 44 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéroport
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] BD Topo
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] contrôle qualité
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] extraction de la végétation
[Termes IGN] image Pléiades-HR
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle numérique de surface
[Termes IGN] Nice
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] QGIS
[Termes IGN] réalité de terrainRésumé : (Auteur) Le Service d’information aéronautique (SIA) est un service de la DGAC (Direction générale de l’aviation civile) qui publie et exploite des obstacles à la navigation aérienne afin de sécuriser les vols aux abords des aérodromes. L’article propose une étude comparative entre des données images aériennes (OrthoImages) et des données images satellite (Pléiades et Sentinel) dans les deux domaines suivants : détection d’obstacles (essentiellement végétation et bâtiments) ainsi que leur mise à jour. Il ressort que les images satellite, du fait de leur forte qualité radiométrique et géométrique, offrent un potentiel légèrement supérieur aux images aériennes pour le SIA. De futures études utilisant d’autres capteurs optiques, LiDAR et Radar et des moyens de contrôle plus exhaustifs, devront être menées pour confirmer cette tendance. Numéro de notice : A2022-225 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100191
in XYZ > n° 170 (mars 2022) . - pp 36 - 44[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/03/2022])
[article]
Titre : Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur Année de publication : 2022 Article en page(s) : pp 1225 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données localisées
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] polarisation
[Termes IGN] rizièreRésumé : (Auteur) Three Sentinel-1A datasets in vertical transmitted and horizontal received (VH) and vertical transmitted and vertical received (VV) polarisations, and the linear combination of VH and VV (VHVV) are evaluated for rice green leaf area index (LAI) estimation using four machine learning regression models [Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT)]. Results showed that for the entire growing season, VV outperformed VH, recording an R2 of 0.68 and an RMSE of 0.98 m2/m2 with the k-NN model. However, VHVV produced the most accurate estimates with GBDT (R2 of 0.82 and RMSE of 0.68 m2/m2), followed by that of VHVV with RF (R2 of 0.78 and RMSE of 0.90 m2/m2). Our findings have further confirmed that combining VH and VV data can achieve improved rice growth modelling, and that tree-based algorithms can better handle data dimensionality. Numéro de notice : A2022-274 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1773545 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1773545 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100753
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1225 - 1236[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 RAB Revue Centre de documentation En réserve L003 Disponible Towards synthetic sensing for smart cities : a machine/deep learning-based approach / Faraz Malik Awan (2022)
Titre : Towards synthetic sensing for smart cities : a machine/deep learning-based approach Type de document : Thèse/HDR Auteurs : Faraz Malik Awan, Auteur ; Noël Crespi, Directeur de thèse ; Roberto Minerva, Directeur de thèse Editeur : Courcouronnes : Télécom SudParis Année de publication : 2022 Importance : 106 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l’Institut Polytechnique de Paris préparée à Telecom SudParis, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification par arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] Espagne
[Termes IGN] parking
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] pollution acoustique
[Termes IGN] pollution atmosphérique
[Termes IGN] réseau neuronal récurrent
[Termes IGN] système de transport intelligent
[Termes IGN] trafic routier
[Termes IGN] ville intelligenteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) We worked on one of the most significant research directions in Smart City, i.e., Intelligent Transportation System (ITS). ITS encapsulates several domains, such as electronic vehicles notification systems, traffic information, smart parking, and environment. However, in this thesis, we target two of its important domains; i) Smart Parking, and ii) Road Traffic. We started our research with Smart Parking use case. Performing literature review, we realized that different Machine Learning (ML) and Deep Learning (DL) approaches have been used for smart parking solutions. In most of these proposed approaches, enclosed parking areas were targeted with different feature sets to predict the "occupancy rate" in parking areas. It inspired us to conduct a comparative analysis to answer following questions; Given the parking prediction use case, how do the traditional ML models perform as compared to complex DL models? Provided big data, can less complex, traditional ML models outperform complex DL models? How well these models can perform to predict the availability of the individual on-street parking spots rather than predicting the overall occupancy rate of an enclosed parking area. To answer these questions, we choose five well-known classical ML algorithms (K-Nearest Neighbours, Random Forest, Decision Tree) and DL algorithm (Multilayer Perceptron). To take our investigation into depth, we train Ensemble Learning Model, in which we combine all the above-mentioned ML and DL models. A huge parking dataset of city of Santander, Spain, has been used which consists of around 25 million records. We also propose to recommend available parking spots based on the current location of the driver. Moving forward with our research goals, we performed literature review on road traffic and found road traffic associated with air pollution and noise pollution often. However, to the best of our knowledge, air pollution & noise pollution have never been use d in traffic prediction problem. In this part of our research, firstly we used air pollution (CO, NO, NO2, NOx, and O3) along with the atmospheric variables, such as wind speed, wind direction, temperature, and pressure to improve the traffic forecasting in the city of Madrid. This successful experiment motivated us to extend our investigation to another factor, which is also strongly correlated with road traffic i.e., noise pollution. Hence, as an extension of our previous work, in this part of our research, we use noise pollution to improve the traffic prediction in the city of Madrid. Note de contenu : 1- Introduction
2- Parking space prediction using classical ML and deep learning models
3- Road traffic prediction improvement using air pollution and atmospheric data
4- Using noise pollution to improve traffic prediction
5- Conclusion and future workNuméro de notice : 20025 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/URBANISME Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Telecom SudParis : 2022 Organisme de stage : SAMOVAR DOI : sans En ligne : https://tel.hal.science/tel-03722891/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101825 An automatic workflow for orientation of historical images with large radiometric and geometric differences / Ferdinand Maiwald in Photogrammetric record, vol 36 n° 174 (June 2021)
[article]
Titre : An automatic workflow for orientation of historical images with large radiometric and geometric differences Type de document : Article/Communication Auteurs : Ferdinand Maiwald, Auteur ; Hans-Gerd Maas, Auteur Année de publication : 2021 Article en page(s) : pp 77 - 103 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement de formes
[Termes IGN] artefact
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image ancienne
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] réalité augmentée
[Termes IGN] réalité virtuelle
[Termes IGN] reconstruction 3D
[Termes IGN] scène urbaine
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) This contribution proposes a workflow for a completely automatic orientation of historical terrestrial urban images. Automatic structure from motion (SfM) software packages often fail when applied to historical image pairs due to large radiometric and geometric differences causing challenges with feature extraction and reliable matching. As an innovative initialising step, the proposed method uses the neural network D2-Net for feature extraction and Lowe’s mutual nearest neighbour matcher. The principal distance for every camera is estimated using vanishing point detection. The results were compared to three state-of-the-art SfM workflows (Agisoft Metashape, Meshroom and COLMAP) with the proposed workflow outperforming the other SfM tools. The resulting camera orientation data are planned to be imported into a web and virtual/augmented reality (VR/AR) application for the purpose of knowledge transfer in cultural heritage. Numéro de notice : A2021-471 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12363 Date de publication en ligne : 06/06/2021 En ligne : https://doi.org/10.1111/phor.12363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97925
in Photogrammetric record > vol 36 n° 174 (June 2021) . - pp 77 - 103[article]DEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques / Ali H. Ahmed Suliman in Geocarto international, vol 36 n° 7 ([15/04/2021])PermalinkPermalinkAssessing local trends in indicators of ecosystem services with a time series of forest resource maps / Matti Katila in Silva fennica, vol 54 n° 4 (September 2020)PermalinkExtraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])PermalinkImproved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests / Sruthi M. Krishna Moorthy in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)PermalinkA point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)PermalinkDirectionally constrained fully convolutional neural network for airborne LiDAR point cloud classification / Congcong Wen in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)PermalinkImproved indoor positioning based on range-free RSSI fingerprint method / Marcin Uradzinski in Journal of geodetic science, vol 10 n° 1 (January 2020)PermalinkDepth-based hand pose estimation : Methods, data, and challenges / James Steven Supančič in International journal of computer vision, vol 126 n° 11 (November 2018)PermalinkNo-reference image quality assessment for image auto-denoising / Xiangfei Kong in International journal of computer vision, vol 126 n° 5 (May 2018)Permalink